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Abstract

Secure Internet of Things (IoT) systems are extremely difficult to achieve as most IoT devices are low-

cost and low-maintenance devices with low computing power and human intervention to run complex secu-

rity methods. Therefore, lightweight data-driven, especially Machine Learning (ML)-based, security meth-

ods have been developed particularly for IoT systems. On the other hand, these methods often learn offline

from large data collected through extensive simulations, which may be time consuming and provide biased

(misleading) data. This thesis investigates the open issues and ways to enable fully online and lightweight

learning for ML-based intrusion detection paving the way towards secure IoT.

We first develop an Intrusion Detection System (IDS) that learns the normal traffic patterns of the IoT

network and detects both malicious network traffic packets and compromised devices. This IDS is based on

Deep Random Neural Network (DRNN) model combined with originally proposed traffic metrics and Sta-

tistical Whisker based Benign Classifier (SWBC). For each of malicious traffic detection and compromised

device identification, we propose a set of original network traffic metrics that enable accurate recognition

of Botnet traffic patterns and footprints of the attacker. In addition, we develop a new SWBC algorithm to

classify traffic packets as benign and malicious by learning the classification criterion based on the DRNN

outputs on the training data. We further present offline and quasi-online (incremental and sequential) learn-

ing algorithms for our IDS.

Subsequently, we evaluate the performance of our IDS with both offline and quasi-online learning algo-

rithms for Botnet DDoS, DoS, and zero-day attacks on three public datasets. The results show the superior

performance of our IDS with low computation time compared to well-known ML models. The results also

reveal the potential of online learning for intrusion detection.

Finally, in order to enable fully online learning of ML-based IDS requiring no human intervention, we

propose the novel Self-Supervised Intrusion Detection (SSID) framework. For the learning of utilized IDS,

the SSID framework collects and labels traffic packets based only on the decisions of the IDS and their sta-

tistically measured trustworthiness. The SSID framework enables IDS to adapt time-varying characteristics

of the network traffic quickly, eliminates the need for offline data collection, prevents human errors in data

labeling, and avoids labor costs for model training and data collection through experiments. Therefore – as

the experimental results on public datasets for malicious traffic and compromised device detection using

well-known ML models also suggest – SSID is very useful and advantageous to develop an online learning

ML-based IDS for IoT systems.
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i Probability of selecting packet i to use as a malicious packet

qi Probability of rejecting packet i to use in training

Crep Factor of representativeness of the traffic packets learned by IDS

Cgen Factor of generalization ability of IDS

STTl Set of inter-transmission times of all packets learned by IDS until the end of learning phase

l, which has mean of 1/λl
SPLl Set of packet lengths times of all packets learned by IDS until the end of learning phase l,

which has mean of 1/λo

STTo Set of inter-transmission times of all normal packets observed during continuous detection,

which has mean of 1/µl
SPLo Set of packet lengths times of all normal packets observed during continuous detection,

which has mean of 1/µo

DTT
KL KL-Divergence from STTl to STTo

DPL
KL KL-Divergence from SPLl to SPLo

DTT
KL−norm Normalized KL-Divergence from STTl to STTo

DPL
KL−norm Normalized KL-Divergence from SPLl to SPLo

∆ Adequacy of the packets learned by IDS

κ Knowledge of IDS obtained from the packets learned

E(l) Empirical error measured at the end of learning phase l



Chapter 1

Introduction

1.1 Motivation

The Internet is simply a network of interconnected computer systems, where nodes can communicate

each other and send or receive data. In this way, it allows interconnected computer systems, i.e. nodes,

to access services and exchange information through various platforms in the form of text, voice, image,

video, etc. These systems communicate mainly using standardized protocol known as the Internet Protocol

(IP) [1]. The IP was designed by the Defense Advanced Research Projects Agency (DARPA) for use in

interconnected systems to manage data transmission over the Internet. Using IP, data is transmitted in the

form of packet from a source to destination both of which are identified by fixed length addresses. An IP

packet is comprised of a header and the data, where the header contains the necessary information, such as

packet size and source-destination addresses, for successful transmission and reception of the packet.

A collection of interconnected nodes exchanging data to achieve a common goal often referred as a

"networked system". While applications using the Internet are common examples for the networked sys-

tems, cloud computing, distributed systems (e.g. fog computing), and the Internet of Things (IoT) are other

examples with increasing use and importance.

1.1.1 The Internet of Things

When a networked system is comprised of connected physical objects (or devices), which operate mostly

with minimum or no human intervention and communicate using Machine-to-Machine (M2M) technolo-

gies [2, 3], it is called the Internet of Things. IoT objects are often embedded with actuators and sensors

providing environmental data measurements to end users or execute automated commands [4]. In recent

years, IoT-based systems have become one of the main foci of network research [5] and have increasingly

large application areas, including healthcare, education, agriculture and safety, aiming to improve the quality

of everyday life [6–9].

Considering the most fundamental components and security requirements of an IoT system, it is mainly

modeled by a three layer architecture composed of “Perception Layer”, “Network Layer”, and “Application

Layer” [10, 11]. These layers can be summarized as follows:

• The perception layer is considered as the first layer where the actuators and sensors are located to

collect and process data of physical quantities [12]. When using some local or short-range networks,

1
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e.g. ad hoc network, cooperation between devices can also be performed at this layer [13]. In addition,

as the sensor nodes have relatively simple and low-cost hardware, they are not sufficient to have

complex cybersecurity systems [11].

• The network layer – also known as the “transmission layer” – is the second layer where packets

carrying information collected via sensors are transmitted to other devices or a central data processing

unit, such as a server or cloud. Although the communication security of networked systems is well

researched, IoT communication is still plagued with attacks that eavesdrop on messages or create

congestion due to the large number of low-cost communicating nodes.

• The application layer of IoT systems hosts user-end applications, such as smart homes, cities, and

transportation [14, 15]. In this layer, while some services are provided for each application, the prin-

cipal operations of the fundamental are also performed in this layer.

1.1.2 IoT Security

Since IoT devices are generally lightweight devices with limited resources (such as low computing

power, low memory, and limited power supply), these devices are often

• struggling to perform preventive cybersecurity actions, such as encryption or authorization, due to

their low computing power,

• vulnerable to attacks that flood system memory,

• severely affected by repeated operations and packet re-transmissions that may be the result of an

attack.

In addition, most IoT devices have either software vulnerabilities or weak login credentials (or both)

making them an easier target for attackers than user-enabled devices, such that 70% of all IoT devices are

considered to be vulnerable. As a result of these vulnerabilities, it is estimated that various devices in an

average smart home are targeted by 12, 000 attacks in a single week [16].

As the number of low-cost vulnerable IoT devices and networks containing such devices is increasing

rapidly with expanding application areas and increasing use of data-driven systems, cybersecurity of net-

worked systems has become one of the main concerns, such that cyberattacks on IoT devices are considered

to be the primary concern by 33% of cybersecurity companies [16]. Therefore, it is crucial to enhance the

cybersecurity of IoT networks in order to ensure their safe, trusted and seamless operation, and achieving

secure networked and IoT systems has been one of the main research foci. On the other hand, while systemic

approaches to improving the security of cyberphysical systems have been suggested [17, 18], it is difficult

(if not totally impossible) to burden simple IoT devices with complex security functionalities [19].

1.2 Problem Statement and Thesis Contributions

The majority (approximately 52%) of IoT devices are low-cost and low-maintenance devices deployed

in massive IoT networks [20]. Therefore, developing and implementing complex and advanced security

methods, such as Machine Learning (ML)-based Intrusion Detection System (IDS), is a challenging task,
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especially for the following reasons: 1) The low computational powers of these devices are not sufficient to

execute complex algorithms. 2) Data-driven algorithms (e.g. ML-based algorithms) require large amounts

of data that are difficult to collect as they require considerable labor, high development costs, and long

deployment time. 3) These algorithms are customized for the individual system or network to which they

are applied, as their parameters are directly optimized for that system. As a result, when these algorithms

need to be deployed for a new system, a significantly large amount of work has to be manually repeated.

The main purpose of the present thesis is to research online learning for IDS towards the development

of secure IoT systems. Our research aims to address the above issues and provide a lightweight, easy-

to-implement algorithm for intrusion detection, which is one of the key security assurance methods (that

shall be reviewed in Section 2.2). To this end, we propose a novel Self-Supervised Intrusion Detection

(SSID) framework in order to enable fully online learning of ML-based IDS with no offline data or human

intervention required. In addition, we develop an ML-based IDS which is considerably lightweight and based

on original traffic metrics, new statistical decision-making algorithm and the well-known Deep Random

Neural Network (DRNN). This IDS can learn either offline or online using small sized data and identify

both malicious traffic and compromised (malware infected) network nodes.

Accordingly the main contributions of this thesis are as follows:

• The first, and the main, contribution of the present thesis is the development of a self-supervised

learning framework for ML-based IDS, called Self-Supervised Intrusion Detection (namely, SSID)

framework, that enables the fully online learning of the IDS parameters requiring no human inter-

vention. As its main advantages, the SSID framework 1) enables IDS to easily adapt time varying

characteristics of the network traffic, 2) eliminates the need for offline data collection, 3) prevents

human errors in data labeling, and 4) avoids labor costs for model training and data collection through

experiments.

• Within the development of the SSID framework, we statistically measure the trustworthiness of an

ML-based IDS considering its generalization ability and the traffic packets that IDS learned. To

this end, we present measures to estimate the generalization ability and the representativeness of the

learned traffic.

• The rest of the contributions are towards the development of an ML-based IDS that can be trained

offline or quasi-online. To this end, as the third contribution of this thesis, we use Deep Random Neural

Network model to create an auto-associative memory on the network traffic patterns and combine it

with originally determined traffic metrics and classification algorithm. In addition, we develop three

learning procedures for the developed IDS for offline, sequential, and incremental learning.

• Subsequently, we develop a classification algorithm, called Statistical Whisker based Benign Classi-

fier (SWBC), that identifies the malicious traffic comparing the actual traffic and the expected traffic

estimated by auto-associative memory. In addition, we determine original metrics which are easy to

calculate using only the header information of the traffic packets, and highly effective to analyse the

impacts of Botnet attacks on the network traffic and to capture the signatures of an attacker.

• The last contribution of this thesis is the development of a new system to identify compromised IoT

devices (bots) based only on the network traffic without requiring access the device status or message
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contents. Although it is crucial to identify compromised devices along with the malicious traffic to

successfully prevent an attack from spreading or mitigate its impacts on the network, the compromised

device identification has not yet been well-investigated in the literature.
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1.4 Thesis Outline

The remainder of this thesis is organized as follows: In Chapter 2, we provide an overview of cybersecu-

rity and intrusion detection. To this end, first, background on the most common cybersecurity breaches and

security assurance methods is given. Then, recent work on security issues at each layer in the IoT system

architecture is reviewed. Accordingly, this chapter provides the necessary background on cybersecurity in

networked systems and highlights some major issues for secure IoT.

In Chapter 3, we address two main issues to improve the security of IoT networks through intrusion

detection, where these issues are detection of cyberattacks and identification of compromised devices (or

nodes) over an IoT network. This chapter provides a brief problem statement, discusses the use and impor-

tance of malicious (attack) traffic detection and compromised device identification, and comprehensively

reviews the recent literature on each issue.

In Chapter 4, we develop a new IDS with offline and quasi-online auto-associative learning to both de-

tect malicious traffic and identify compromised IoT devices. Accordingly, this section first reviews DRNN,

which is the core ML model used in our IDS. In this chapter, in addition to offline, incremental and se-

quential learning algorithms, we determine nine original network traffic metrics and propose the SWBC

algorithm. The performance of this IDS is evaluated for detecting Botnet attacks and different types of

unknown (zero-day) cyberattacks on three publicly available datasets.

In Chapter 5, we propose the novel SSID framework designed to train any given IDS fully online with

no human intervention. As a part of the SSID framework, we develop a self-supervised packet selection

methodology based on an original statistical measurement of the IDS trustworthiness. We also evaluate the

performance of the SSID framework using both the IDS developed in the previous chapter and well-known

ML models for each of the malicious traffic detection and compromised device identification on 6 different

attack types in two public datasets.

Chapter 6 summarizes this thesis emphasizing the contributions and the obtained results. In addition, it

provides some insight into possible future work that may help to address remaining open issues and expand

current work in new directions.



Chapter 2

Cybersecurity in Networked Systems

Security in information processing systems aims to ensure confidentiality, integrity, and availability of

information against the unauthorized access, modification, and destruction during its storage, processing or

transit [21]. That is, its main goal is to ensure the privacy, safety, and accessibility of critical information.

On the other hand, when a security incident occurs, it can have hazardous consequences such as leakage,

loss or corruption of private and critical data, or even ransom demand [22].

As we shall present some major breaches in the next section, the cybersecurity breaches often cause to

loose confidentiality, integrity, or availability of information and critical data, which are are briefly defined as

follows: Confidentiality refers to ensuring that only the authorized users are permitted to access information

for any purpose. Integrity requires that information has not been tampered and is presented accurately.

Availability means that information is accessible to authorized users whenever needed to process [23].

As the Internet consists of interconnected networked systems that provide or process information and

become an essential part of daily personal or business activities, its security is extremely important. How-

ever, the openness and interconnectedness of the Internet have also made it vulnerable to various security

threats, such as malware, phishing attacks, hacking, identity theft, and cyberterrorism. Therefore, it is cru-

cial to ensure the security of the internet to prevent these threats, protect user and data privacy, and ensure

comprehensive information security.

In order to achieve security in the internet and information processing systems, comprehensive measures

have to be implemented. These measures include intrusion detection, authentication and access control, data

encryption, and user education. In the remainder of this chapter, we review the security breaches, means and

methods to assure security, and the common security issues in IoT.

2.1 Breaches of Cybersecurity in Networked Systems

Cybersecurity breaches can occur in networked systems that produce, process or store valuable assets

and information, with significant consequences such as theft of sensitive information, financial loss, repu-

tation damage, or disruption of services. Cybersecurity breaches can occur intentionally or unintentionally

due to various factors, such as software or hardware vulnerabilities, malware, social engineering and hack-

ing activities, or human error. In this section, we shall review some examples of cybersecurity breaches,

especially common attack types, in networked systems.
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2.1.1 Phishing Attacks

Phishing attacks are one of the most common type of attacks targeting the individual users and businesses

as 83% of 573 investigated businesses identified phishing attacks in 2022 [24], and it is reported in [25] that

financial losses directly from successful phishing attacks increased by 76% in 2022.

Phishing attacks are based on tricking users into taking “wrong actions” such as revealing sensitive

information (e.g. usernames and passwords) and downloading malware. Although there are many different

types of phishing attacks [26], the most common phishing attacks target either numerous victims at once

(generally via email) or a specific victim through social engineering tactics such as impersonating a trusted

entity or using fake login pages [27].

Email phishing usually means that an attacker sends thousands of fake emails, awaiting a response from a

small percentage of victims and collecting personal information, account credentials, and money. Generally,

the fake emails (including links, attachments, logos, and signatures that the email contains) are designed to

imitate the actual emails from well-trusted organizations and to create a sense of urgency, so that the victims

shall be less suspicious, more impulsive and more prone to error [28].

A more in-depth and the most effective (accounting over 90% of all phishing attacks [29]) type of

phishing attack, called spear phishing, targets a specific person or organization rather than a large number of

random victims. Since the attacker usually aims to gain access to sensitive data or administrative accounts,

spear phishing attacks require the attacker to have detailed information about the targeted organization.

Therefore, they are more difficult to detect than email phishing attacks.

2.1.2 Malware-based Attacks

Malware-based attacks, as the name suggests, are designed for compromising a vulnerable cybersystem

via malicious software, i.e. malware. Malware such as viruses, trojans, worms, and ransomware can breach

the networked system through security vulnerabilities (or sometimes links in phishing emails). As a result

of the breach, the malware-based attack can result in severe consequences such as theft of confidential data,

damage to systems, and even the victim device becoming the host of a new attack [30]. It is estimated that

2.8 billion malware-based attacks occurred worldwide in the first half of 2022 alone [31]. Additionally, in

United Kingdom, 16% of businesses that detected a breach and/or attack are targeted by malware-based

attacks, 4% of which is ransomware [24].

In ransomware attacks, the malware first gains access to the victim’s device, files and sensitive data.

Then, the attacker demands a ransom (usually in cryptocurrency) to trade this data with the victim. There-

fore, it is one of the most profitable, so one of the most popular, malware-based attacks [32]. In some cases,

to obtain the sensitive information, attackers may target IoT devices (such as, IP cameras) and use their

vulnerabilities.

Some malware-based attacks, such as worms and trojans, can pose a significant threat to IoT devices

and networks. Due to the vulnerable architecture of low-cost interconnected IoT devices with default login

credentials, worm attacks, in particular, can easily distribute malware across a network of thousands of

devices and discover security vulnerabilities to cause hazardous damage to those devices. In June 2019, a

worm malware, called Silex, bricked more than 2000 IoT devices in the first few hours [33, 34]. The Silex

IoT-worm is specifically designed to target Linux-based devices (mostly, IoT devices) and permanently
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disable the operations of the victim device.

2.1.3 Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) Attacks

Denial of Service (DoS) and Distributed Denial of Service (DDoS) are the other types of attacks that

pose a significant threat to cyber systems. It can be said that the risks posed by these attacks are rapidly

increasing, especially with the increase in the number of IoT devices with weak security. Indeed, in the

second quarter of 2022, DDoS attacks annually occurred 109% more in the network layer and 72% more in

the application layer [35].

Attacks that aim to disrupt the normal services of cyber system by overloading its resources are classified

as DoS attacks. In DoS attacks, the attacker often sends too many requests to the victim to process, so that

the victim can no longer perform its normal operations. By sending numerous requests, the attacker targets

to either exhaust system resources (e.g. memory and storage) or flood the system’s communication and

processing capacity.

When a device is exposed to a DoS attack aimed at exhausting resources, it occupies all available com-

puting resources of the victim device. Therefore, this attack often results in operational slowdowns, service

delays, or complete system shutdown [36]. Moreover, when a device is exposed to a flooding DoS attack,

its capacity is saturated by overwhelming amount of traffic received.

DDoS attacks are variants of DoS attacks in which malicious traffic is generated by multiple sources,

each acting similarly to the source of a DoS attack. DDoS attacks usually originate from a network of

malware-infected, compromised devices called bots. Therefore, DDoS attacks cannot be blocked by black-

listing an individual source of the attack, as with DoS attacks.

In a DDoS attack, each of the originating bots generates meaningless and superfluous traffic (or re-

quests). While the individual impact of each DDoS bot is less overwhelming than the source of a DoS

attack, the cumulative impact of the network of bots – namely the botnet – is more hazardous and can result

in long service interruptions [37].

Furthermore, the Botnet DDoS attacks are also one of the most common and dangerous malware-based

attacks for the IoT networks. The Botnet is a network of devices infected by a malware which turns the

victim device into a bot. Although these bots may be used to perform a variety of tasks, including spreading

spam, stealing data, mining cryptocurrency, and conducting phishing scams, it is most commonly used to

perform DDoS attacks on IoT networks.

2.1.4 Eavesdropping and Modification Attacks

Eavesdropping and modification attacks refer to incidents when attacker gains access to the communica-

tion between two devices. Depending on the purpose and type of an attack, the attacker can intercept, delete,

or modify the network traffic. One of the most active form of these attacks is the Man-in-the-Middle (MitM)

attack, as 95% of Hypertext Transfer Protocol Secure (HTTPS) servers are estimated to be vulnerable against

this attack [38].

The basic idea behind the MitM attack is that the attacker intercepts communication between the two

communicating nodes [39]. If the attack is successful, the attacker will act as a proxy so that the nodes will

believe there is direct communication between them. This way, all messages in the conversation will be
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available for the attacker to read, modify or even delete. The attacker in MitM can obtain valuable secret

data such as conversations within the organization and login credentials of users.

2.1.5 Unauthorized Access and Insider Threats

Unauthorized access to the system assets, such as devices, databases and control centres, is another major

issues for the cyber systems. Insider threats are one of the main sources of unauthorized access breaches

for the organizations as the employees or contractors intentionally or unintentionally compromise network

security. Unauthorized access incidents often result in data leaks or malware injection. These incidents,

which increased by 35% in 2021, are one of the leading causes of data breaches for organizations [40].

In summary, cybersecurity breaches in networked systems can have severe consequences. Detecting and

preventing those breaches through methods and means is crucial to minimize their impact and assure the

security of cybersystems.

2.2 Methods and Means to Assure the Security of Cybersystems

Assuring the security of cybersystems involves developing and implementing various methods and

means to protect these systems and ensure their confidentiality, integrity, and availability [23]. These meth-

ods and means include both technical (software and hardware) and organizational development tools. Al-

though the development tools, such as training employees, developing incident response plans, and conduct-

ing cybersecurity audits have positive effects on raising awareness and preventing human errors [41, 42],

we now focus on the technical means to be developed and implemented to minimize the risk of security

breaches in cybersystems. These methods and means are intrusion detection systems, authentication and ac-

cess control mechanisms, and cryptography techniques. It should be noted that although these methods are

necessary for cybersecurity, none of them alone is sufficient to ensure the security of a cyber system against

all breaches.

2.2.1 Intrusion (Attack) Detection

Intrusion (or attack) detection is one of the methods to assure the security of a cybersystem, e.g. an IoT

network. It is a software application that monitors the cybersystem regarding the network traffic and/or the

states of the nodes (e.g. devices and gateways) in order to identify malicious activities and actual threats.

IDSs are often used as part of protection mechanisms against the cyberattacks, such as Intrusion De-

tection and Prevention Systems, in heterogeneous networks, especially those involving IoT devices, which

are extremely vulnerable and difficult to protect against various cybersecurity breaches [43–45]. As most of

them are also reported by NIST [46, 47], IDSs are specially needed for the following actions:

• Detecting security breaches, in particular cyberattacks, that are not prevented by other methods which

shall be reviewed in the rest of this section

• Reporting malicious activities and possible threats immediately to a network management system

• Identifying and deterring individuals or machines (e.g. compromised devices) that pose a threat to the

rest of the system, and
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• Controlling the quality of existing security policies.

Accordingly, the decisions of IDS can further be used to mitigate the impacts of cyberattacks [48–50]

or to optimize the system for maximum security along with high Quality-of-Experience and Quality-of-

Service [51]. On the other hand, the absence of IDS or the use of poor-performing IDS can have serious

consequences, such as leaking private data, service interruptions, and damage to software and hardware.

In order to enable a quick and accurate response, the IDS generally operate in either device (i.e. host) or

network level. The host-based IDS analyses the incoming and outgoing traffic on the network interfaces

of the considered device, while the network-based IDS is located to observe and analyze the traffic of

all devices in the network (or sub-network) [52]. Therefore, host-based intrusion detection is capable of

precisely detecting attacks that directly target or originate from the device hosting the detector, and network-

based intrusion detection can identify attacks originating from both inside and outside the network.

Both host-based and network-based IDS can be further classified according to their methodologies used

as signature-based and anomaly-based detection [53]:

Signature-based IDS aims to detect cyberattacks whose signature patterns are known by the technique

[54]. To this end, an IDS compares the actual traffic patterns against the signature patterns stored in the

database for the known attacks. If the actual traffic patterns match with any type of attack known in-advance,

the detector raise an alarm and report the incident of intrusion [55]. This type of IDS is clearly limited for

detecting zero-day attacks which are unknown by the techniques and no stored signatures are available.

Some examples of works that study signature-based IDS are as follows: Syed et al. [56] used three

different supervised machine learning models to detect DoS attacks targeting devices using the MQTT

protocol, with metrics calculated from traffic characteristics such as source/destination addresses and port

numbers. Gelenbe et al. [57] developed a signaling storm detection and mitigation method which analyses

the signaling transitions and time-outs due to inactivity. Tan et al. [58] converted traffic patterns into images

and used computer vision with Earth Mover’s Distance to detect DoS attacks in cybersystem.

Anomaly-based IDS usually learns the normal traffic patterns of devices or networks, i.e. the behaviour

of devices when there is no intrusion. Then, if the actual traffic pattern deviates significantly from the learned

patterns, it is classified as an anomaly corresponding to an intrusion [59].

In the last two decades there are plenty of works developing anomaly-based intrusion detection tech-

niques to assure the security of cybersystems [60]. For example, in earlier research [61], Guangzhi et al.

performed anomaly-based detection of DDoS, worm, and spam attacks by analyzing the states of system

resources and network protocols. Tan et al. [62] developed a method using multivariate correlation anal-

ysis for DoS attack detection. Hindy et al. [63] recently used auto-encoder neural network to develop an

anomaly-based detection system for zero-day attacks.

In Chapter 3, we shall examine in more detail the work on both signature and anomaly-based intrusion

detection specifically targeting IoT devices and networks.

2.2.2 Authentication & Access Control

Authentication and access control together aim to ensure that only verified and authorized users can

access the permitted assets of the cybersystem. To this end, a user is first authenticated by verifying its

identity through various factors, such as username and password, biometrics, and token. It is then allowed
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to access the assets for which it is authorized to read, modify, or delete. The authentication and access con-

trol mechanisms may prevent cybersystems against some security breaches, such as phishing, brute force,

eavesdropping and MitM attacks as well as the unauthorized access and insider threats [64, 65]. Cyber-

systems that contain IoT devices mainly use password-based, token-based, or multi-factor authentication

mechanisms [66].

Password-based authentication is widely used and well investigated mechanism combining a unique

username and a password which consists of letters, numbers and special characters. The combination of

username and password is stored in the authentication database, and a user is only allowed to perform

requested actions when it provides the right combination. Although this mechanism has been extensively

studied and formalized in the last three decades [67, 68], some recent works focused on improving the

security of and adapting password-based authentication for IoT devices and networks. In [69], Renuka et

al. developed a password-based authentication scheme for IoT networks in which any pair of IoT nodes

can authenticate each other and the mobile user holds only one secret key. Recently for IoT-enabled smart

cities, Meshram et al. [70] developed an authentication protocol using a chaotic map and a smart card that

identifies an incorrect password.

Token-based authentication is in two types: 1) One-time password is stored in the authentication

database and compared with the one provided by the user. 2) A hardware device, e.g. smart card, stores

a token that will be used to authorize the user for its requests. Due to their ease of use and implementation,

token-based authentication mechanisms are well-accepted [66]. Recent research investigate the token-based

authentication mechanisms specialized for IoT (or heterogeneous) networks [71, 72]. For example, Aman

et al. [73] enhanced token-based authentication for IoT devices through a dynamic energy quality exchange

method that aims to consume less energy when a lower level of security is acceptable. Dammak et al. [74]

developed a token-based authentication mechanism designed to be lightweight and suitable for IoT devices

in order to reduce energy consumption and computational requirements for authentication of the devices.

Amin et al. [75] developed a token-based authentication protocol using smart card for distributed cloud

environment containing IoT devices.

Multi-factor authentication is based on the combination of two or more factors, such as passwords,

tokens, and biometrics. Due to its versatility, multi-factor authentication has increasing popularity to be used

for securing cybersystems, including IoT networks [76]. Statistics show that the percentage of accounts

using multi-factor authentication was increased from 28% to 78% between 2017 and 2021 [77]. Recently,

Noura et al. [78] developed multi-factor authentication mechanism combining a cryptographic protocol with

communication protocol features targeting to achieve high security under limited computational resources

of IoT devices. In addition, for IoT cloud-based environment, Alsahlani et al. [79] developed a lightweight

multi-factor authentication and authorization mechanism based on three factors which are passwords, smart

cards, and biometrics.

2.2.3 Cryptography

Cryptography is another technique to secure the communication against the unintended read and process

of the information. It is generally used to encrypt and decrypt data during its transmission between nodes

[80]. In this way, cryptography techniques aim to ensure information security aspects such that the data is
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protected against unauthorized accesses and changes, so eavesdropping and modification attacks. On the

other hand, implementation of cryptography requires high computational power, and it is still vulnerable

against cryptographic attacks, such as brute force or ciphertext attacks.

The most common types of cryptography techniques are categorized as Symmetric Encryption, Asym-

metric Encryption, Cryptographic Hash Functions, and Quantum Cryptography [81]. In Symmetric Encryp-

tion, as known as Secret Key Cryptography, a single key is generated both encryption and decryption of

the data, so both the transmitter and the receiver must have the key. The distribution of the key is one of the

biggest challenges for this category of techniques [82]. Asymmetric Encryption, as known as Public Key
Cryptography, proposed by Diffie and Hellman [83] and requires a pair of keys to first encrypt then decrypt

data. One of these keys, namely public key which can be freely distributed, is used for encryption while the

private key is kept as a secret and used for decryption. The public and private keys are mathematically re-

lated; however, constructing private key from the public key is computationally infeasible. Cryptographic
Hash Functions are algorithms that generate a fixed-length hash code from data of any size; such that it

is computationally impossible to reconstruct original data from the hash code. Finally, Quantum Cryptog-
raphy uses quantum mechanics to securely communicate between two nodes, often based on quantum key

distribution. Quantum Key Distribution allows a key to be shared over a public communication medium

without the risk of eavesdropping.

2.3 Security Issues in IoT Devices and Networks

We now review the security and privacy issues in IoT systems. According to a study by HP [19], as an

average of 25 vulnerabilities were detected per device, 70% of IoT devices are vulnerable to attacks due

to poor password security and lack of encryption and access permission methods. Moreover, while only

less than 10% of IoT devices are reported to be secure, the most common attacks are caused by hackers

themselves, malware attacks, and Denial of Service (DoS) attacks, with 65%, 23% and 20% respectively

[84].

Recall – from Section 1.1.1 – that an IoT system can be represented through Perception, Network and

Application layers [85]. Each of these layers has a different structure, different features, and special tech-

nologies [86–89]; therefore, the security issues for these layers are also different. Accordingly, in this sec-

tion, we review security issues and some recommended solutions in recent literature for each of the layers

in three-layer architecture of IoT.

2.3.1 Perception Layer

This layer is directly connected to the physical world and contains devices with limited resources. There-

fore, the majority of security issues occur in this layer are directly related to the vulnerable IoT devices.

Unauthorized access to passive tags, replay attacks, and false data injection attacks are security issues that

are often reported to occur in this layer [90–93].

Unauthorized Access problem often occurs in systems with a large number of RFID modules and

no strong authentication protocols [92]. In such systems, an unauthorized person (an attacker) can access

modules and modify or delete records [86]. Examples of studies aimed at preventing unauthorized access:

Gharooni et al. [94] proposed a mutual authentication model based on random number generation. Mujahid



2.3. SECURITY ISSUES IN IoT DEVICES AND NETWORKS 15

et al. [95] used recursive hashing to authenticate tags. Also, a method called Arbitrator is developed in

[96, 97], which consists of reader authentication and channel jamming modules. For IoT networks, Luo et

al. [98] developed a communication protocol using symmetric key cryptography.

Replay Attacks on IoT networks, communication is interrupted by an attacker to resend or delay the

message [90, 99]. The replay attack is quite similar to the MitM attack that occurs at the network layer. For

protection against replay attacks, Kim [100] proposed a mechanism that adds timestamps and nonce options

to packages. In recent years, Malik et al. [101] has proposed a feature space for the Support Vector Machine

(SVM) to detect higher-order harmonic distortions introduced by modeling replay attacks.

False Data Injection attacks target cyber-physical systems (such as IoT networks) to compromise sensor

readings and corrupt collected data causing miscalculations and operations. In recent years, these attacks

are among the most critical and damaging perception layer attacks that have occurred, especially in smart

grids [102, 103]. In order to detect False Data Injection attacks in smart grids: Han et al. [104] developed a

detection methods using graph neural network, Tan et al. [105] developed lightweight detection algorithm

using a multi-objective optimization and singular value decomposition especially for DC micro grids, and

Lin et al. [106] developed a edge-based federated learning framework which enables individuals and separate

data owners to contribute to improve attack detection.

2.3.2 Network Layer

This layer contains the communication medium and creates the connection between IoT devices and the

network [15], so that it can be said that the main security problems of this layer are mostly caused by attack-

ers exploiting security vulnerabilities in the communication network. Although there are numerous attack

types targeting this layer, such as Routing, Data Transit, Storage, Exploit, Sink Hole and Sleep Deprivation,

and two of the most common threats are DDoS and MitM attacks [107].

In Denial-of-Service attacks, attackers aim to prevent the normal functioning of a device (or system) by

usurping the limited resources of device [108]. To this end, an attacker or malicious device attacks the target

device by forwarding superfluous requests [109].

When a network attack occurs following the same techniques as DoS attacks, but affects more de-

vices through botnets (i.e. networks of compromised devices), it is called a Distributed Denial-of-Service
attack [110]. Due to the low-security measures implemented in IoT devices, they are often more easily com-

promised compared to user-enabled devices (such as computers and mobile phones). Therefore, one can say

that IoT devices are the most likely potential victims of DDoS attacks while they are the nodes where these

attacks can most easily be originated.

In the last decade, it has been observed that DDoS attacks such as TCP SYN, PUSH and ACK, ICMP

Flood, UDP Flood, Smurf, DNS Flood and HTTP Flood have often occurred in IoT networks. These DDoS

attacks originate from devices compromised by malware, the most popular and recent examples being Mirai,

Tsunami, BASHLITE, LUABOT, Remaiten, NewAidra, Torii, and Meris [111, 112]. The recent research

well-investigated these attacks and malware types to understand their characteristics and impacts [113]. For

example, several authors have done extensive work to understand the characteristics [114], traffic patterns

[115], source code [116], and the capabilities and impacts [117] of the Mirai Botnet attacks.

There are also significantly large number of works to develop defense mechanisms against the DDoS
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attacks in IoT networks, where this mechanism consists of multiple phases such as detection, prevention and

mitigation [118–120]. As one can also see from the recent examples [121–123] of Botnet attack mitigation

methods developed using ML and implemented for IoT networks, successful detection of both attack traffic

and bots (compromised IoT devices) is a prerequisite for effective mitigation actions. Therefore, in this

thesis, we propose a novel self-supervised learning framework for ML-based IDS which are also investigated

and developed within this thesis using both offline and online learning algorithm. In addition, Chapter 3 shall

review both device and network level attack detection, including the identification of compromised devices,

for IoT networks.

Furthermore, the basic idea behind the Man-in-the-Middle attack is that the attacker intercepts commu-

nication between two nodes [39]. If the attack is successful, the attacker will act as a proxy so that the nodes

will believe there is direct communication between them. In this way, all messages in the conversation will

be available for the attacker to read, modify or even delete.

To address MitM attack in IoT networks, Li et al. [124] investigated an MitM attack with its impacts and

consequences on an IoT-Fog network. Kang et al. [125] developed a routing mechanism for IoT networks

to prevent the network against MitM attacks. Anthi et al. [126] developed a ML-based intrusion detection

system with supervised learning to classify different attacks, including MitM and DoS in a smart home

IoT network. Lahmadi et al. [127] developed MitM attack detection algorithm using auto-encoder neural

network together with a Convolutional Neural Network (CNN)-based classifier. To this end, they compared

Long-Short Term Memory (LSTM) and Temporal CNN for auto-encoder and used CNN combined Random

Forest (RF) for attack classification.

2.3.3 Application Layer

Since this layer connects the end-user to the network via application, it is vulnerable to attacks targeting

both applications and users as well as some of the network layer attacks (e.g. DoS attack) of the IoT system.

Usually the cyberattacks that take advantage from the human errors target the application layer of IoT, such

as phishing attacks, data leaks, and malicious code attacks [15, 90, 91].

In Phishing Attacks, the attacker aims to compromise the system and gain access to the victim’s per-

sonal data through counterfeit communication over channels such as e-mail, voice, text message or web-

site [128, 129].

Recent studies have mostly focused on the detection of phishing attacks developing ML-based ap-

proaches [130]: In order to determine if a given website is a fake website created for malicious phishing

activity, Liu and Lee [131] used a CNN model that processes a screenshot of the website, and Yang et

al. [132] combined CNN and LSTM for processing multidimensional features based on URL and the HTML

code of the website. For the same purpose, Gandotra and Gupta [133] first determined a set of features re-

lated to the presence of the website, its URL, and its HTML source; then they used these features with six

different ML models including Decision Tree (DT), K-Nearest Neighbour (KNN), and SVM.

Specifically for the IoT networks: Bustio-Martínez et al. [134] detected phishing URL attacks achiev-

ing 99.57% accuracy using the RF model with feature selection. Gopal et al. [135] developed a detection

and mitigation mechanism against the phishing URL attacks over an IoT network. In this mechanism, a

deep neural network is combined with an auto-encoder architecture to learn – in a supervised fashion – the
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classification of legitimate and phishing websites.

Data Leak refers to the transmission of data and/or the circulation of confidential information by unau-

thorized users [136]. Due to vulnerabilities in controlling users’ access and weak authentication mecha-

nisms, data leakage can occur as a result of an accidental or deliberate attack [137].

Due to small number of security means that applied in IoT networks, they are highly vulnerable against

the intrusions resulting in data leakage. In order to address this issue, Yu et al. [138] developed a model,

called Adaptive Feature Graph Update, to detect the data leakages through a feature graph in an IoT system

while Lu et al. [139] developed a data sharing architecture based on permissioned blockchain for federated

learning especially in Industrial IoT.

In Malicious Code Attacks, the attacker can target the vulnerabilities of the victim device or system by

injecting malicious code, thereby gaining control of the system or causing serious damage [86]. In Reference

[140], Wei and Qiu detected different types of malicious code by monitoring the runtime of tasks on an

IoT device. In addition ML techniques are often used to detect malware with dynamic analysis: CNN is

combined with a 2-dimensional version of the extracted features in each of [141] and [142]; SVM, DT and

KNN classified the malware types based on system behavior in [143]; and recurrent neural network is used

to make decisions on the malicious file based on machine activity features in [144].



Chapter 3

Intrusion Detection in the Internet of
Things Networks

3.1 Intrusion Detection as a Means to Enhance Cybersecurity

As presented in Section 2.2, intrusion (or attack) detection is one of the methods to assure the security

of a cybersystem, e.g. an IoT network. It is a software application that monitors the cybersystem regarding

the network traffic and/or the states of the nodes (e.g. devices and gateways) in order to identify malicious

activities and actual threats. When a malicious activity is detected, the IDS reports it immediately to a

network management system.

To enable a quick and accurate response, IDS generally operates in either device (i.e. host) or network

level. The host-based IDS analyses the incoming and outgoing traffic on the network interfaces of the con-

sidered device, while the network-based IDS is located to observe and analyse the traffic of all devices in the

network (or sub-network) [52]. Therefore, host-based intrusion detection is capable of precisely detecting

attacks that directly target or originate from the device hosting the detector, and network-based intrusion

detection can identify attacks originating from inside or outside the network.

Recently, considering both device and network level, ML-based intrusion detection is capable of de-

tecting malicious activities very accurately (for example, the intrusion detection methodology that we shall

present in this thesis), and successful IDS enables network management systems to take early actions and

respond attacks before the damage occurs. Therefore, one can say that IDS is a very important component

to enhance the cybersecurity of the networked system.

3.2 IoT Intrusion Detection

IoT devices are the target of various attacks that differ from user-enabled devices due to their limited

resources and specific network settings. Therefore, we may say that different approaches are required to suc-

cessfully detect attacks in IoT networks. We now aim to review the detection techniques targeting the attacks

in the network layer of IoT (which are given in Section 2.3.2). To this end, we present some recent studies

whose foci are on detecting DoS and Botnet DDoS, two of the most popular attacks targeting IoT devices.

We also present the works that developed techniques to detect multiple types of attacks simultaneously using

18
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a single software.

3.2.1 Denial of Service (DoS) Attacks

Brun et al. in [145] developed an attack detection algorithm that analyzes network traffic flowing through

the IoT gateway in a smart home environment. This algorithm detects TCP SYN and UDP flood attacks

based on specific metrics for each attack type using the DRNN model trained via Stochastic Gradient De-

scent. In [146], Evmorfos et al. investigated the performances of LSTM and Random Neural Network (RNN)

models for detecting TCP SYN flood attack via time series prediction approach. The experimental results of

this work revealed the superior performance of RNN over LSTM for TCP SYN flood attack detection.

In [147], Rathore and Park developed an Extreme Learning Machine (ELM)-based attack detection

algorithm operating edge devices to perform distributed detection. The algorithm developed in this work

combine ELM with semi-supervised fuzzy c-means method for clustering unlabelled samples, the perfor-

mance of this algorithm has been evaluated on NSL-KDD dataset which includes samples of DoS attacks.

Iqbal et al. in reference [148] used DT classifier to detect DoS attacks in the NSL-KDD dataset. During

the training phase of DT, it is combined with feature selection based on well-known four search algorithms

Genetic Algorithm, Particle Swarm Optimization, Best First, and Rank Search.

In addition, DT and SVM were used with supervised learning to detect DoS attacks, including Black

Hole and Flood, on Wireless Sensor Networks by Al-issa et al. in [149]. Performance evaluation showed

that DT outperformed SVM and successfully detected Black Hole attacks while having difficulty detecting

Flood attacks. In [150], Wankhede and Kshirsagar performed experimental study to detect DoS attacks. In

this work, RF and Multi-Layer Perceptron (MLP) methods are used with supervised learning to perform

binary classification.

3.2.2 Botnet based Distributed Denial-of-Service (DDoS) Attacks

DDoS attacks, including various type of Botnet attacks, are one of the most common types of attacks

with 61, 880, 000 incidents reported by SAM in 2021 [151]. Therefore detection of DDoS attacks has been

very actively studied for the last decade.

There are also plenty of research studies aiming to detect Botnet attacks which are very common way of

executing DDoS attacks. Botnet – command and control – attack occurrence reportedly increased by 64%

from Q2 to Q3 and 124% from Q3 to Q4 of 2021 [152, 153].

In reference [154], Tuan et al. conducted a comparative study for performance evaluation of ML meth-

ods aiming to classify Botnet attack traffic. In this work, the authors evaluated the performances of SVM,

MLP, DT, Naive Bayes (NB), and unsupervised ML methods (such as K-means clustering) on two datasets

(including KDD’99) revealing that unsupervised ML methods achieve the best performance with 98% accu-

racy. In [155], Shao et al. created an ensemble of Hoeffding Tree and RF models with online learning using

both normal and attack traffic. In [156], Shafiq et al. developed a feature selection technique as a prepro-

cessing algorithm for an ML-based botnet attack detector. This algorithm ranks features according to their

Pearson correlation coefficients and greedily maximizes the detector’s performance with respect to area un-

der Receiver Operating Characteristic (ROC) curve in the Bot-IoT dataset. In [157], Doshi et al. developed

an attack detection algorithm comprised of feature extraction from the network traffic and ML classifier.
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In the place of the ML classifier, the authors used each of KNN, SVM, DT, and MLP methods; then, they

evaluated the performance of this algorithm on a dataset collected within the same work. Letteri et al. [158]

developed an MLP based Mirai Botnet detector specialized for Software Defined Networks. The authors fed

5 metrics, including the used communication protocol, to the MLP.

In [159], Banerjee and Samantaray performed an experimental work to deploy network of honeypots to

attacks botnet attacks and to detect attacks via ML methods, such as DT, NB, Gradient Boosting, and RF.

In reference [160], McDermott et al. developed the Bidirectional LSTM-based method which is developed

for packet-level botnet attack detection by performing text recognition on multiple features including source

and destination IP addresses of a packet. In addition, Tzagkarakis et al. [161] detected botnet attacks via

sparse representation framework with a large number of inputs (115) for which only normal traffic is used

to tune parameters.

Meidan et al. [162] developed an ML-based attack detection technique which is trained using only nor-

mal traffic and tested for Mirai and Bashlite botnet attacks on an IoT network with nine devices. The authors

also published the data collected in this study under the name N-BaIoT dataset. In order to detect Botnet

attack in N-BaIoT dataset, Htwe et al. [163] used Classification and Regression Trees with feature selection,

and Sriram et al. [164] performed a comparative study using 7 different ML methods (including NB, KNN,

and SVM). In Reference [165], Soe et al. developed a Botnet attack detection algorithm comprised of two

sequential phases first to train utilized ML method and perform feature selection, then to perform attack

detection. The authors used MLP and NB within this architecture, and they evaluated the performance on

N-BaIoT dataset. In [166], Parra et al. developed a cloud based attack detection method using CNN for

phishing and using LSTM for Botnet attacks. The authors evaluated the performance of this method also on

the N-BaIoT dataset achieving 94.8% accuracy. CNN was also used by Liu et al. [167] with features that are

processed by the triangle area maps based multivariate correlation analysis algorithm.

3.2.3 Different – New – Types of Unknown (Zero-day) Attacks

Furthermore, although the Botnet attacks are one of the most common attacks targetting IoT networks,

they are not alone (as mentioned in Section 2.1) to raise a concern about the security of an IoT network

in different layers. Therefore, along with the highly accurate detection of Botnet (or any specific type of)

attack, it is important to detect different types of unknown attacks simultaneously with acceptable accuracy

using a single IDS that does not depend on the signatures of a specific attack type. To this end, as an early

example, Moradi and Zulkernine [168] used MLP with supervised learning to classify two different attack

types SYN Flood and Satan achieving about 90% test accuracy.

Recently, in [169], Catillo et al. developed an autoencoder based anomaly detection method which is

trained using both benign and malicious data in a semi-supervised fashion to classify anomalies caused by

an intrusion. The authors evaluated the performance of this method on a public dataset that contains data for

various attacks, such as DoS, DDoS, and Botnet. Two studies are used RNN with supervised gradient-based

learning to detect different attacks: Huma et al. [170] used DRNN with fully connected layers to perform

multi-class classification on DS2OS and UNSW-NB15 datasets, while Latif et al. [171] used RNN with

feed-forward architecture to perform binary classification (in other words, anomaly detection) on DS2OS

dataset.
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The authors of some works [172–176] have evaluated the performance of their techniques on NSL-KDD

dataset: In [172], Sarker performed an extensive comparative and experimental study for anomaly detection

and multi-class classification of attacks using ML models. To this end, Sarker compared the performances

of ten ML models, including NB, KNN, SVM and DT on two public datasets UNSW-NB15 and NSL-

KDD. All models trained in a supervised fashion using samples corresponding both benign and all types of

attacks, and RF is said to be achieve the best performance. Subba et al. [173] used MLP with supervised

learning to developed a binary intrusion classifier. In [174], Zhang et al. used a Deep Belief Network model

to perform intrusion detection. This model is trained using both benign and malicious samples, and the

hyper-parameters (e.g. number of hidden layers) of this model are determined via a genetic algorithm prior

to the training of the model. In [175], Yin et al. trained a recurrent neural network model with supervised

gradient learning to minimize cross entropy for each of the binary and multi-class classification of different

attacks. Kunang et al. [176] used MLP with supervised learning and hyper-parameter tuning for binary and

multi-class classification of different attacks in two different datasets including NSL-KDD. To this end,

MLP is first trained as the encoder part of a deep auto-encoder model and then an output layer is added and

parameters updated for each classification task.

All of the works reviewed above used machine learning models with supervised learning; that is, the

techniques developed in these works require training samples for both benign and malicious situations. On

the other hand, for a real IoT network, it is difficult or often impossible to identify all types of attacks that

could target the network and to collect data for these attacks [177]. Therefore, it can be said that although the

supervised techniques are promising in terms of the performance, it is crucial to develop an unsupervised

technique that can detect different types of – unknown – attacks (i.e. zero-day attacks) [178]. While the

technique developed in this thesis fulfills this task, there are also the following examples of works that

develop unsupervised intrusion detectors: Alom and Taha in [179] combined K-means clustering with each

of the auto-encoder neural network and Restricted Boltzmann Machine, and evaluated the performance of

the combinations on NSL-KDD dataset achieving maximum of 92.12% accuracy. Choi et al. [180] compared

performance of the basic auto-encoder neural network with its denoising, stacked, and variational versions

on NSL-KDD dataset. Their results revealed that the basic auto-encoder outperforms other auto-encoder

versions with 91.7% accuracy.

3.3 Compromised Device (Bot) Identification

Various types of Botnet attacks, such as DDoS and brute force attacks, can lead to thousands of infected

devices [110] compromising victim devices and turning them into a “bot” via malware [181]. These mali-

cious bots can generate fraud information, cause data leaks, and spread a malware. It is reported that 27.7%

of all global website traffic in 2021 was generated by bots with malicious intent, and this number is growing

rapidly with a 7.3% change from 2018 to 2021 [182].

For instance, in 2016, a massive DDoS Botnet attack that mainly targets IoT devices and whose source

code was later released under the name “Mirai”, targeted Domain Name System (DNS) provider Dyn [117],

rendering Netflix, Reddit, Spotify, and Twitter [183, 184] inaccessible, and gaining malicious access to the

servers of leading cybersecurity companies from millions of different IP addresses [185]. Mirai and its

variants can still be considered among the most influential and hazardous Botnet – DDoS – attacks on IoT
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devices and networks in recent years [186].

The Mirai Botnet sends TCP SYN requests to the IP addresses of large numbers of IoT devices. When

the victim device responds to a request, the attacker gains access to it using weak login credentials (such as

default usernames and passwords pre-installed during manufacture) and can install malware on the victim

device, turning it into a compromised device (namely bot). The bot then generates traffic that floods other

servers and devices with meaningless requests and/or compromises them.

The Botnet attack compromises new devices and propagates over the IoT network, as illustrated in

Figure 3.1. Therefore, one may say that Botnet attacks significantly increase network congestion, power

consumption, and processor and memory usage at the device level, hence posing challenges for resource-

constrained devices and IoT networks [187].

Figure 3.1: Example of the spread of a malware during an ongoing Botnet attack

Given the nefarious impact of Botnet attacks at both network and device levels in IoT networks, it is

crucial to identify compromised IoT devices along with the malicious network traffic during an ongoing

Botnet attack. While detecting malicious traffic allows reactive actions to alleviate the effects of the attack

and (maybe) stop it, identifying the compromised IoT devices paves the way for preventive actions against

the spread of malware and Botnet attack.

Some recent works [188–193] focused on detecting compromised IoT devices during Botnet attacks.

In Reference [188], Kumar et al. developed an optimization-based technique to detect Mirai-like bots by

scanning the destination port numbers in packet headers. In this technique, they analysed the subset of IoT

packets to minimize the delay due to the detection of compromised devices. Chatterjee et al. [189] developed

an evidence theory based traffic flow analysis in IoT networks in order to detect malicious devices selecting

the rarest set of traffic features, where the full set of features includes the transport layer protocol, number

of reconnections and source/destination ports. In [194], in order to detect IoT botnet in an Industrial IoT

network, Nguyen et al. developed a dynamic analysis technique utilizing various ML models, such as SVM,

DT, and KNN, based on the features generated from the executable files. In Reference [195], Hristov and

Trifonov developed a compromised device identification algorithm using wavelet transformation and Haar

filter on the metrics indicating the processor, memory and network interface card usage of an IoT device.

In [193], Prokofiev et al. used logistic regression to determine if the source device is a bot based on 10

metrics regarding the traffic packets. The performance of logistic regression is tested for a botnet that spreads

through brute-force attacks. In Reference [190], Nguyen et al. developed an anomaly detection technique to

detect compromised devices using a combination of federated learning and language analysis for individual
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device types identified prior to anomaly detection. In order to evaluate the performance of this technique,

the authors collected a dataset by installing 33 IoT devices, 5 of which were malicious, and showed that

detection performance is around 94% for positive and 99% for negative samples.

More differently, in Reference [191], Abhishek et al. detected not compromised devices but compro-

mised gateways monitoring the downlink channels in an IoT network and performing binary hypothesis

test. In [196], Trajanovski and Zhang developed a framework consisting of honeypots to identify the indi-

cators of compromised devices and botnet attacks. Bahşi et al. in [197] addressed the scalability issues for

ML-based Bot detection algorithms by minimizing the number of inputs of ML model via feature selection.

In [192], for mobile IoT devices, Taneja proposed to detect compromised devices taking into account their

location, such that if a location change or current location of an IoT device is classified as unusual behavior,

the device is considered compromised.



Chapter 4

Intrusion Detection System with Offline and
Quasi-Online Learning

In this chapter, we develop an IDS based on DRNN model with both offline and quasi-online learning. To

enable this IDS to learn benign traffic patterns, we create an Auto-Associative memory using DRNN, called

Auto-Associative DRNN (AADRNN). For AADRNN based IDS, we develop two training algorithms for

offline and quasi-online learning, and we develop simple and original decision making algorithm which is

capable of classifying network traffic as either malicious or benign based on only the output of AADRNN.

In this chapter, we also show that such IDS can be extended and successfully used for different tasks such as

Botnet attack detection, simultaneous detection of different types of attacks, and identification of compro-

mised IoT devices (namely, bots).

The proposed IDS has the following advantages:

1. It is trained only with normal traffic (i.e. its training does not require any attack traffic), so that the

difficult collection of extensive attack data is no longer necessary, and biases that may be caused by

the simulation of attacks are avoided.

2. Single IDS that learned legitimate (benign) traffic can simultaneously provide accurate detection for

various types of attacks on an IoT network.

3. The proposed IDS can be trained in parallel to its real-time operation (when it provides detection

results) using the ongoing legitimate network traffic.

Section 4.1 of this chapter reviews DRNN, which is the special case of RNN and used as the core ML

model used in our IDS. Section 4.2 presents the methodology of our IDS with offline learning algorithm.

The IDS with both offline and incremental quasi-online learning is evaluated to detect malicious packets

generated by a spreading Botnet attack and those generated simultaneously by various types of attacks.

Section 4.3 presents the IDS with quasi-online sequential learning for compromised device identification.

Finally, Section 4.4 evaluates the overall performance of IDS for different tasks.

24
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4.1 Review of Deep Random Neural Network

In this chapter, we use RNN with feed-forward architecture and deep learning, called DRNN as the core

ML model of our IDS. The RNN model, which is proposed by Gelenbe [198], is a recurrent spiking neural

network model with random firing of neurons according to an exponential distribution of excitation rates. In

this section, we briefly review the RNN and its special case DRNN in order to introduce the terminologies

about DRNN and make our IDS to be understood completely.

The DRNN model that we use is structured inH fully connected feed-forward layers each of which with

Ch-neuron clusters of densely coupled neuronal cells (namely, neuron) of RNN. Each cluster c at layer h,

denoted by (c, h), has total N(c,h) identical neurons. Since all of the N(c,h) neurons in a given cluster c are

statistically identical, we index them directly by (c, h).

As the main property of the RNN, each neuron at cluster (c, h) has an internal state of k(c,h)(t) ­ 0 at

any time t. If k(c,h)(t) at any time t is strictly positive, then a neuron at cluster (c, h) fires a spike (sends a

“trigger”) after an exponentially distributed random interval of parameter r(c,h) to the set of other neurons

in the same cluster (c, h) each of which is selected by probability of 1/N(c,h).

We define the probability that any neuron at cluster (c, h) is firing (sending a “trigger”), denoted by

q(c,h), as

q(c,h) ≡ lim
t→∞

Prob[k(c,h)(t) > 0]. (4.1)

This trigger has one of the following effects on the receiving neuron:

• This trigger causes immediate transmission of another trigger by the receiving neuron to some other

neuron in the cluster with probability p, so the internal state of the receiving neuron decreases by −1.

• The receiving neuron absorbs the arriving trigger with probability (1 − p) and it’s internal state in-

creases by +1.

In addition, when a neuron at cluster (c, h) fires (with probability q(c,h)), the internal state of this neuron

k(c,h)(t) drops by −1.

From all neurons at the previous layer h − 1, all neurons at cluster (c, h) will receive the following

inhibitory input spikes, denoted by Λ(c,h):

Λ(c,h) =
Ch−1∑
c′=1

w
(c,h)
(c′,h−1) q(c′,h−1), (4.2)

where w(c,h)
(c′,h−1) ­ 0 is the connection weight between any neuron at cluster (c′, h − 1) to any neuron

at cluster (c, h). In addition to the triggers, each neuron in a cluster receives an external Poisson flow of

excitatory spikes at rate λ+ and a Poisson flow of inhibitory spikes at rate λ−. An arriving excitatory spike

increases k(c,h)(t) by +1. On the other hand, if k(c,h)(t) > 0, the arrival of an inhibitory spike decreases

k(c,h)(t) by −1.

For simplicity, let focus on the cluster (c, h) and let use n instead of N(c,h), r instead of r(c,h), and Λ

instead of Λ(c,h). Accordingly, the probability that any neuron at cluster (c, h) is excited, namely q(c,h), is

given in [199, 200] as

q(c,h) =
λ+ +

r q(c,h) (n−1) (1−p)
n S(c,h)

r + λ− + Λ +
r q(c,h) (n−1) p

n S(c,h)

, (4.3)



26 CHAPTER 4. IDS WITH OFFLINE AND QUASI-ONLINE LEARNING

where

S(c,h) =
∞∑
i=0

[
q(c,h) p (n− 1)

n

]i
, and r ­ Λ (4.4)

hence:

q(c,h) =
λ+ +

r q(c,h) (n−1) (1−p)
n−q(c,h) p (n−1)

r + λ− + Λ +
r q(c,h) (n−1) p
n−q(c,h) p (n−1)

. (4.5)

The analysis can be simplified for large n, to obtain:

q(c,h) ≈
λ+ +

r q(c,h) (1−p)
1−q(c,h) p

r + λ− + Λ +
r q(c,h) p

1−q(c,h) p
, (4.6)

resulting in the second degree polynomial in q(c,h) given by:

0 = q2
(c,h) (λ− + Λ)− q(c,h)[p (r + λ+) + λ− + Λ] + λ+ . (4.7)

Since q(c,h) is a probability, we obtain the following positive solution and consider it to be the activation

function, denoted by ζ(Λ) of our DRNN model for input Λ to cluster (c, h):

ζ(Λ) = q(c,h) =
p (r + λ+) + λ− + Λ

2 [λ− + Λ]
−

√(p (r + λ+) + λ− + Λ
2 [λ− + Λ]

)2

− λ+

λ− + Λ
, (4.8)

where – recall that – the input Λ =
∑Ch−1
c′=1 w

(c,h)
(c′,h−1) q(c′,h−1) for the cluster (c, h). It is also provided that

λ+ (1− p) < λ− + p r + Λ, and the condition λ+ < λ− + p r is sufficient.

4.2 Malicious Traffic Detection with Offline and Quasi-Online Learning

This section describes our IDS, which is shown in Figure 4.1, based on AADRNN with an offline and

incremental learning algorithm. This IDS is composed of three modules, namely Metric Extraction and Pre-

processing, AADRNN, and Statistical Whisker based Benign Classification (which is the decision maker).

These modules respectively calculates original metrics of the actual network traffic and prepares them to

be processed by AADRNN, calculates metrics for expected legitimate traffic, and compares the metrics for

expected and actual traffic to make a decision on the probability that the current traffic is malicious.

4.2.1 Metric Extraction and Preprocessing

In order to capture the patterns of IoT traffic that AADRNN can learn and IDS observe the footprints of

attacks, we extract metrics via the Metric Extraction and Preprocessing module. This module first calculates

the vector of M metrics for each packet (or burst of traffic) i, denoted by xi = [x1
i , . . . , x

m
i , . . . , x

M
i ]. Note

that each of these metrics, namely xmi , defined in the design phase of IDS – prior to the training or execution

– considering the characterizations of both traffic and targeted attacks.
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Figure 4.1: Architecture of the DRNN based attack detector with its three modules: Metric Extraction and

Preprocessing, AADRNN, and Statistical Whisker based Benign Classification

Preprocessing Metrics:

This module preprocesses (via simple/lightweight operations) the extracted metrics in order to prepare

them for the input of AADRNN. To this end, if the set includes non-numerical (categorical) metrics, they

are first encoded into numerical features. For each non-numerical metric m, the possible set of unique

values, denoted by Um, is determined from the available dataset Dtrain (which shall also be used for offline

learning). Then, for each unique value u ∈ Um, a positive integer in [1, |Um|] is assigned. As soon as each

non-numerical metric is converted to numerical, the value of the numerical metric, assigned into xmi , is

normalized by min-max scaling as

xmi ←
xmi − min

i∈Dtrain
xmi

max
i∈Dtrain

xmi − min
i∈Dtrain

xmi
(4.9)

Determination of the Metrics for Mirai Botnet Attacks:

We now explain the metrics that are originally defined aiming to detect Mirai Botnet attack. Recall that

Mirai is a type of attack that spreads to IoT devices over the network. In addition, every device infected by

Mirai generates more traffic than usual, causing a DDoS in the network, and the traffic pattern of that device

(e.g. the sizes or the transmission intervals of packets) shows different characteristics. Thus, we intuitively

know that, when a device is affected by the Mirai attack, it will try to increase the total size of the traffic to

overload the network via generating more packets.

Accordingly, in order to point out the most important footprints of the Mirai attacks, we define the

following metrics:

• Metric 1: The total size of the last P transmitted packets,

• Metric 2: The average inter-transmission times of the packets over the last P packets, (The inter-

transmission time of a packet is the time passed between the transmission of this packet and that of

the previous packet that is generated by the same source.)
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• Metric 3: Total number of packets that are transmitted in a time window with a duration of T .

These metrics are specifically defined to represent network traffic in a way that the differences between

attack and normal traffic become more visible while they can be calculated using only the header information

of the traffic packets. Therefore, these metrics can be easily calculated without the need for any sensitive

or device-specific information, thus preventing IDS from making biased decisions, remaining anonymous

regarding packet content and communicating devices, and suitable for real-time operation on lightweight

systems. We shall also measure the effectiveness of these metrics in Section 4.4.2 on the detection of Mirai

attacks.

4.2.2 Auto-Associative Memory with DRNN (AADRNN)

As shown in Figure 4.1, the central part of our IDS utilizes an auto-associative memory that is created

by a trained DRNN model. During the real-time operation of the IDS, from the metrics xi, this model

calculates the metrics x̂i representing the expected xi value when i is benign. To this end, i.e. to create an

auto-associative memory on the benign network traffic, we train the DRNN model to learn the data collected

during the normal operation of the IoT network with no intrusion attempt.

Structure of DRNN Used:

As the methodology of RNN and its special case DRNN is already reviewed in Section 4.1, we now

present the particular structure of DRNN which is used in this work. In the IDS, we use a DRNN model

which consists of H layers (the hidden and output layers) and a rectangular structure with equal units at

each layer. To this end, each hidden layer h ∈ {1, . . . ,H − 1} is comprised of M (which is equal to the the

number of inputs of DRNN) clusters of RNN cells, and the output layer is comprised of the same number

of linear neurons. We let Wh denote the [(M + 1) ×M ] matrix of connection weights (including biases)

between the layer h− 1 and layer h for h ∈ {1, . . . ,H}; that is, Wh is the multiplier for the inputs of layer

h. In addition, ζ(·) denote the activation function of a DRNN cluster. Note that we obtain the AADRNN as

this DRNN model learned the benign traffic to create auto-associative memory.

Accordingly, in real-time operation, the forward pass of AADRNN model for the given input vector xi
is computed as:

x̂(i,1) = ζ([xi, 1]W1) (4.10)

x̂(i,h) = ζ([x̂(i,h−1), 1]Wh) ∀h ∈ {2, . . . ,H − 1}, (4.11)

x̂i = [x̂(i,H−1), 1]WH , (4.12)

where x̂(i,h) is the output of layer h for packet i, and the term [xi, 1] or [x̂(i,h), 1] indicates that 1 is added to

the input of each layer as a multiplier of the bias.

Offline Learning Algorithm:

In order create an auto-associative memory that can retrieve expected normal metrics from the metrics of

either normal or malicious traffic, we train the DRNN using only normal traffic data by our offline learning
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algorithm which is based on the semi-supervised algorithm presented in [200]. During the learning process,

DRNN learns to retrieve the metrics of benign traffic from their noisy versions.

First, letX be the matrix of metrics for normal traffic packets in the training datasetDtrain, and X̂h be the

matrix of the corresponding outputs of layer h calculated with the learned weights as given in (4.10)-(4.12):

X =



x1
...

xi
...

x|Dtrain|


, X̂H =



x̂1
...

x̂i
...

x̂|Dtrain|


, and X̂h =



x̂(1,h)
...

x̂(i,h)
...

x̂(|Dtrain|,h)


∀h ∈ {1, . . . ,H − 1} (4.13)

Then, within the offline learning algorithm, for each layer h ∈ {1, . . . ,H}, we compute Wh as

Wh = argmin
{W :W­ 0}

( ∣∣∣∣∣∣[adj(ζ(X̂h−1WR )),1(|Dtrain|×1)]W − X̂h−1

∣∣∣∣∣∣2
L2

+ ||W ||L1
)
, (4.14)

where we take X̂0 = X , 1(|Dtrain|×1) is a column vector of ones with length |Dtrain|, and the (M ×M ) weight

matrix WR is randomly generated with elements in the range [0, 1]. On the other hand, adj(A) is the linear

mapping of the elements of matrix A into the range [0, 1] then applies the z-score (standard score), and adds

a positive constant to remove negativity.

In our particular design of offline learning algorithm, we use Fast Iterative Shrinkage-Thresholding

Algorithm (FISTA) [201] to solve the minimization problem (4.14) of cost function with L1 regularization.

To this end, FISTA iterates the operations reviewed in (4.16) for a constant number of times. After its

iterations are completed, we finally normalize each resulting weight matrix Wh:

Wh ← 0.1
Wh

max
(
X̂h)

. (4.15)

Review of FISTA operations for a single iteration t :

Let A = [adj(ζ(X̂h−1WR )),1(|Dtrain|×1)], and a constant α = 0.001

µ0 = 0, and W and Z1are initialized as zero matrices (4.16)

µt =
1 +

√
1 + 4µ2

t−1

2
, ξt =

1− µt
µt+1

Zt+1 = prox(α/β)||·||1(W −
1
β
∇||AW − X̂h−1||22)

= prox(α/β)||·||1(W −
1
β

[2AT (AW − X̂h−1)])

W ← max
[
0, (1− ξt)Zt+1 + ξtZt

]
where, we added the last step to the original FISTA in order to always obtain positive weights. In addition,

prox(α/β)||·||1(B) = U, Ui = max
[
0, |Bi| −

α

β

]
sign(Bi),

β is the maximum eigenvalue of the argument B, and sign(Bi) returns +1 if Bi > 0, −1 if Bi < 0, and 0

if Bi = 0.
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4.2.3 Statistical Whisker based Benign (Non-Attack) Classification

In order to classify the traffic features as attack or benign, we now design a classifier, which compares

the output of AADRNN (x̂i) with the metrics of actual traffic (xi) based on the statistical whisker calcu-

lated from learning dataset. That is, by this classifier, we aim whether the metrics of the actual traffic are

significantly different than the metrics expected under normal traffic.

Decision Making:

During the decision making for each packet i in real-time operation of IDS, we first calculate the absolute

difference between xmi and x̂mi for each metric m:

zmi = |xmi − x̂mi | ∀m ∈ {1, . . . ,M} (4.17)

Then, the total number of metrics with abnormal values, denoted by ψi, (i.e. the number of metrics that are

significantly different than the expected metrics) is computed:

ψi =
∑

m∈{1,...,M}
1(zmi > wm), (4.18)

where wm is the value of whisker that is calculated from the available dataset. Note that 1(Ξ) = 1 if the

statement Ξ is true, and 1(Ξ) = 0 otherwise. That is, in (4.18), the metric m is considered to have an

abnormal value indicative of an attack when zmi > wm.

Finally, the packet i is considered an attack if there are more than θ features with abnormal values:

yi = 1(ψi > θ). (4.19)

Determination of Statistical Whisker:

Using the training data, Dtrain, which consists of only benign traffic features, we determine the values

of θ and wm for each metric m. To this end, for each metric m, the value of the absolute difference zmi is

computed for all i ∈ Dtrain using (4.17). Then, the lower quartile Qml and upper quartile Qmu of {zmi }i∈Dtrain

are calculated as

Dmlower ≡ {i : zmi < median({zmj }j∈Dtrain)}, ∀m ∈ {1, . . . ,M} (4.20)

Qml = median({zmi }i∈Dmlower
), ∀m ∈ {1, . . . ,M}, (4.21)

and

Dmupper ≡ {i : zmi > median({zmj }j∈Dtrain)}, ∀m ∈ {1, . . . ,M} (4.22)

Qmu = median({zmi }i∈Dmupper), ∀m ∈ {1, . . . ,M} (4.23)

Using Qml and Qmu , the whisker wm for the upper quartile is calculated as

wm = Qmu +
3
2

(Qmu −Qml ) ∀m ∈ {1, . . . ,M} (4.24)

Since the training data contains only benign traffic, θ must be selected to classify training samples as

benign traffic. Meanwhile, we should also consider that the training data may include some outlier samples.
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Therefore, we determine θ to classify the majority but not all of the training samples as benign traffic, and

we set the value of θ to the mean of ψi (i.e. the number of abnormal metrics) plus the standard deviation of

ψi in the training data:

θ = µψ + 2σψ, (4.25)

where

µψ =

∑
i∈Dtrain

ψi

|Dtrain|
, and σψ =

√∑
i∈Dtrain

(ψi − µψ)2

|Dtrain|
(4.26)

4.2.4 Incremental Learning for Malicious Traffic Detection

For malicious traffic detection, we revise the classification module and the learning algorithm of the IDS

presented in Section 4.2. That is, we use the AADRNN structure presented in Section 4.2.2 with the metrics

proposed in Section 4.2.1. For the classification module, as large enough training set is not available for

offline learning, we use a simpler classifier:

yi = 1(
1
M

M∑
m=1

|xmi − x̂mi | > θ). (4.27)

In this section, we present the incremental training of AADRNN for malicious traffic detection. Us-

ing incremental quasi-online learning, we will now enable the use of an attack detector without requiring

the offline collection of benign traffic as well. To this end, we develop an Incremental Semi-Supervised

Learning (ISSL) algorithm which combines offline semi-supervised learning algorithm developed in [200]

with sequential learning algorithm developed in [202] and is comprised of initialization and incremental

quasi-online learning stages.

The ISSL algorithm is executed at the end of the transmission of every I packets; that is, ISSL works

on packet transmission windows of length I . The end of the last packet transmission window k is associated

with the transmission of packet i, such that i is multiple of I .

The initialization stage is considered as the cold-start of the proposed IDS. Thus, the transmission of

the first I packets are known to be benign packets since the network is assumed to be working in cold-

start for the first I packets. Using these packets, the connection weights of AADRNN, {Wh}h∈{1,...,H}, are

initialized. To this end, at the end of the first window, k = 1, i.e. after the transmission of the first I packets

via the semi-supervised learning algorithm presented in Section 4.2.2.

At the end of each transmission window k > 1, only the connection weights of the output layer of

AADRNN, WH , are updated via the second stage of ISSL to learn the metrics of the benign packets within

window k. In order to detail this incremental learning process, let define the operation matrix Ok, which is

initialized as the inverse of the Gram matrix:

O1 ≡
[
(X̂ train

k )T X̂ train
k

]−1
(4.28)

where X̂train
k is the matrix of metrics for benign packets within the last I packets which are determined

based on the output of IDS as

X̂ train
k =

{
x̂j : yj = 0,∀j ∈ {i− I + 1, . . . , i}

}
. (4.29)

Note that if all of the last I packets are detected as malicious, no training will be performed until the end of

the first window with normal traffic.
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If there is at least one benign packet in X̂ train
k , we first compute the value of Ok for the current window

k as

Ok = Ok−1 −Ok−1(X̂ train
k,H−1)T

[
I + X̂ train

k,H−1Ok−1(X̂ train
k,H−1)T

]−1
X̂ train
k,H−1Ok−1. (4.30)

Then, we update WH as

WH ←WH +Ok(X̂ train
k,H−1)T (Xk − X̂ train

k,H−1WH) (4.31)

4.3 Compromised Device Identification System with Sequential Quasi-
Online Learning

We further develop an IDS with sequential quasi-online learning in order to enable the training of the

IDS in parallel to its real-time operation with very low human intervention for compromised device (i.e. bot)

identification in an IoT network. In order to secure an IoT network during an ongoing DDoS (especially,

Botnet) attack, both malicious traffic detection and compromised device identification tasks are crucial as

they pave the way to prevent botnet attack from spreading over the network.

The IDS with quasi-online learning ability uses the traffic that is collected in real-time operation of the

network and identified as being benign. Thus, it does not require the collection of either prior attack or nor-

mal (benign) traffic, except during the cold-start of the network. The sequential quasi-online learning enables

IDS to adapt the naturally time-varying characteristics of the network traffic by updating the parameters of

AADRNN automatically and periodically as a function of the traffic it encounters.

Figure 4.2 displays the design of the IDS enhanced with sequential quasi-online learning for the identifi-

cation of a compromised IoT device i, which is called Compromised Device Identification System (CDIS).

Different than the IDS for malicious traffic detection explained in the previous section, it now has a se-

quential semi-supervised learning algorithm that updates the parameters of AADRNN periodically at the

end of every time window k, and both the metric extraction and decision maker (called, infection classifier)

modules are reoriented to identify compromised devices. On the other hand, the core ML model remains the

same as AADRNN; therefore, this section details only the traffic metrics and sequential learning algorithms

for compromised device identification.

In our approach, a distinct instance of the CDIS, which is shown in Figure 4.2, is installed on each device

i to determine if that device is compromised. The CDIS makes decision on a basis of time window during

which it observes traffic packets and calculate statistical metrics. At each time window k, the inputs of the

CDIS are extracted from the received and transmitted traffic flows for the device (or IP Address) i, and the

output is a binary infection decision yi,k for device i.

4.3.1 Defining the Traffic Metrics

Since the aim of the Metric Extraction and Preprocessing module in Figure 4.2 is to identify instances

of the traffic that may contain infection regarding a device i, it is important to judiciously select the metrics

to be extracted. To this end, we now present a new original set of metrics for both the traffic received

and transmitted by each IoT device i, inspired from the three metrics that are defined for malicious traffic
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Figure 4.2: The design of the CDIS with sequential quasi-online learning exemplified for the task of com-

promised device identification

detection in Section 4.2.1. These new metrics are also chosen to address Botnet attacks (especially, that

caused by Mirai malware) and to capture the effects of an attack on the network traffic.

Recall that since Botnet attacks spread over the network by infecting IoT devices, when a device is

compromised via malware, it will generate more packets with a larger amount of total traffic, so as to spread

the attack over more nodes and overload the network. Indeed, in order to identify the sources of attacks (and

the effect of attack), it is important to analyze the traffic received from each source individually, rather than

the overall aggregated traffic received from all sources. In this way, observing the traffic from a compromised

device can be an effective means of detecting the existence of an infection. Thus, we have selected some

statistics (metrics) to summarize the traffic sent or received by each individual device.

First, pk(t, s, d) be the packet sent by source device s to destination d at time t, and |pk(t, s, d)| denote

the length of this packet in bytes. We also let T be the duration of a time window over which the metrics

will be computed. S denotes the set of all source devices while D denotes the set of all destination devices.

Accordingly, the collection of the packets that have been sent by device s to any other device d the network

in time window k, denoted by P s,dk , is computed as

P s,dk ≡ {pk(t, s, d) : (k − 1)T ¬ t < kT}, (4.32)

and the set of all packets arriving to d in window k is:

PS,dk ≡
∑
s∈S

P s,dk . (4.33)

Also let packets sent by the set of nodes S have a maximum and minimum length LMS and LmS in bytes,

respectively, where the minimum may corresponds to a packet with just the header included and an empty

data field. Each node s also has a maximum outgoing rate of Ωs in bytes/second.
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The normalized metrics that are used for the traffic received or sent by node i within window k are as

follows, where each normalized metric takes a value between 0 and 1:

• Received Traffic Metric 1 (RTM1): The normalized average size of packets received by device i

from all the sources in time window k:

x1
i,k =

∑
p∈PS,i

k
|p|∑

s∈S L
M
s × |P

s,i
k |

(4.34)

• RTM2: The normalized maximum size of any packet received at node i from any of the sources in

time window k:

x2
i,k = max

p∈PS,i
k

|p|
LMS

. (4.35)

The use of LMS in RTS1 and RTS2 offers a normalization with respect to the maximum packet length.

Note that large packets do not always suggest attacks: indeed, SYN attack packets may be quite

short [145]. On the other hand, DoS attacks that aim at creating congestion on links would have to be

rather long.

• RTM3: The average number of packets received from all sources that have sent packets to i in time

window k:

x3
i,k =

|PS,ik |∑
s∈S 1[|P

s,i
k | > 0]

. (4.36)

Note that the denominator term in the above expression can be computed iteratively in a very efficient

manner, so that x3
i,k is obtained directly from the terms in x3

i,k−1.

• RTM4: The normalized maximum number of packets received from any single source in time window

k:

x4
i,k =

maxs∈S |Ps,ik |
maxu: 1¬u¬k [ maxs∈S |Ps,iu | ]

. (4.37)

We now define the other traffic metrics that are important for detecting whether IoT device i is infected,

and basically measure the total traffic in terms of both size and packet transmission rate from i to other

devices:

• Transmitted Traffic Metric 1 (TTM1): The normalized total amount of traffic transmitted by device

i in time window k:

x5
i,k =

1
Ωi × T

∑
d∈D

∑
p∈Pi,d

k

|p| , (4.38)

• TTM2: The normalized total number of packets that are transmitted by i in time window k:

x6
i,k =

Lmi
Ωi × T

∑
d∈D
|P i,dk | , (4.39)

where the use of Lmi in TTM2 is due to the fact that the maximum number of packets that may be

transmitted by node i in time T is Ωi×T
Lmi

.
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4.3.2 Structure of DRNN Used

We use the same DRNN structure given in Section 4.2.2 to create an auto-associative memory. Recall

that this DRNN is comprised of H layers with M units at each layer, where M is the number of metrics (i.e.

inputs of DRNN). The units in each hidden layer h ∈ {1, . . . ,H − 1} are the clusters of RNN cells while

the units of the output layer is linear neurons. At each time window k, each layer h has the matrix W k
h of

input weights which are sequentially learned to create an auto-associative memory.

Let xi,k be the input vector of the AADRNN (i.e. the vector of the metrics) for device i at window k such

that xi,k = [x1
i,k, . . . , x

6
i,k], and x̂(i,k,h) be the output of layer h at time window k when the network input is

xi,k and the connection weights are {W i,k
h }h∈{1,...,H}. We also let x̂i,k denote the output of AADRNN, i.e.

x̂i,k = x̂(i,k,H). Accordingly, the forward pass of the AADRNN in CDIS is as follows:

x̂(i,k,1) = ζ([xi,k, 1]W i,k
1 ), (4.40)

x̂(i,k,h) = ζ([x̂(i,k,h−1), 1]W i,k
h ) ∀h ∈ {2, . . . ,H − 1}, (4.41)

x̂i,k = [x̂(i,k,H−1), 1]W i,k
H . (4.42)

4.3.3 The Infection Classification

In order to classify the analyzed device i at time window k as compromised or uncompromised, we

now compute the deviation of the actual metrics from the expected metrics calculated by AADRNN. This

is done by computing the maximum of all the differences between the elements of the input vector xi,k and

the elements of the output vector x̂i,k:

Ψi,k = max
m∈{1,...,M}

(
|xmi,k − x̂mi,k|

)
. (4.43)

We then use a specific threshold value 0 < γi < 1 for device i, so as to provide a binary decision of the

form:

yi,k =

1 (compromised), if Ψi
k ­ γi

0 (uncompromised), otherwise
(4.44)

Since we are carrying out quasi-online learning, without prior offline training using the ground truth, the

output yi,k not only provides decisions, but it also allows us to operate the sequential quasi-online auto-

associative algorithm given below.

4.3.4 Sequential Quasi-Online Learning

As we use sequential learning to create an auto-associative memory from DRNN (namely, AADRNN),

each weight matrix W i,k
h is updated based on only the benign traffic at the end of each time window k after

input xi,k has been processed. At the end of each window k, if yi,k = 1, i.e. xi,k is estimated to contain an

attack, then we do not update the weights, i.e. W i,k
h ←W i,k−1

h , 1 ¬ h ¬ H .

If yi,k = 0 (i.e. i is estimated to be not compromised), we solve the following problem via FISTA

similarly with the offline learning in Section 4.2.2:

W i,k
h = argmin

{W :W­ 0}

( ∣∣∣∣∣∣[adj(ζ(X̂ train
(i,k,h−1)WR )),1k×1]W − X̂ train

(i,k,h−1)

∣∣∣∣∣∣2
L2

+ ||W ||L1
)
, (4.45)
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where X̂ train
(i,k,h) is the matrix that collects the output vectors of layer h over all time windows k′ ∈ {1, . . . , k}

when yi,k′ = 0:

X̂ train
(i,k,h) = {x̂(i,k′,h) : yi,k′ = 0,∀k′ ∈ {1, . . . , k}}, (4.46)

and

X̂ train
(i,k,0) = {x(i,k′) : yi,k′ = 0,∀k′ ∈ {1, . . . , k}}. (4.47)

In practice, when yi,k = 0, we can easily compute X̂ train
(i,k,h) based on only its previous value:

X̂ train
(i,k,h) =

X̂ train
(i,k−1,h)

x̂(i,k,h)

 (4.48)

After FISTA is performed for a predefined number of iterations to solve (4.45), we normalize the result-

ing weight matrix W i,k
h :

W i,k
h ← 0.1

W i,k
h

max
(
X̂ train

(i,k,h)

) . (4.49)

4.4 Overall Performance Evaluations

4.4.1 Experimental Setup

Datasets:

During our experimental study, we use various datasets in order to evaluate the performance of our IDS

for three different scenarios for detecting malicious botnet traffic, various attack types simultaneously, or

compromised device (bot) identification:

• For malicious traffic detection and compromised device identification during Mirai Botnet attack, we

use the data from the publicly available Kitsune dataset [203, 204]. This dataset contains 764, 137

packet transmissions cover a consecutive time period of roughly 7137 seconds (nearly 2 hours) in-

cluding both normal and attack traffic. There are 107 distinct IP addresses that either sent or receive

traffic and for each of which we will perform infection detection.

• In order to evaluate the performance of our IDS for detecting malicious traffic generated by var-

ious types of attacks, we use KDD Cup’99 dataset [205]. This dataset includes both benign and

attack (intrusion) traffic. It contains three different subsets: the training set, the smaller training set

reduced to 10% of the total training set, and the test set. These subsets are respectively comprised of

“4, 898, 431”, “494, 021”, and “311, 029” samples with 41 features related to network traffic.

• During the performance evaluation of IDS for identifying compromised devices (i.e. CDIS), in ad-

dition to the Mirai Botnet data from Kitsune dataset, we also use SYN DoS data from the Kitsune

dataset, which contains 2, 771, 276 packets transmitted in about 53 minutes. We also present our re-

sults for DDoS attacks using HTTP, TCP and UDP protocols as well as a DoS attack using HTTP

protocol from the Bot-IoT dataset [206]. In Bot-IoT, there are 19, 826 packets transmitted in 42 min-

utes for the DDoS HTTP, 19, 548, 235 packets in 40 minutes for DDoS TCP, 18, 965, 736 packets in

47 minutes for DDoS UDP, and 29, 762 packets in 49 minutes for DoS HTTP.
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Hardware:

All experiments are performed on a workstation with 32 Gb RAM and an AMD 3.7 GHz (Ryzen 7

3700X) processor. In addition, all models and algorithms are implemented in Python.

Techniques Used for Comparison:

In this section, we compare the performance of AADRNN-based IDS with the following state-of-the-art

ML models: Linear Regression (LR), Least Absolute Shrinkage and Selector Operator (Lasso), KNN, MLP

and LSTM. Unless otherwise specified in each experiment, these models are used in place of the AADRNN

in our IDS as follows:

• We first selected the Simple Threshold method as the simplest benchmark for malicious traffic de-

tection. In this method, we apply threshold on the mean of the metric values, and we use this model

as a complete IDS, not in place of the AADRNN, unlike the (below) ML models. In order to achieve

the best performance of the Simple Threshold, we search for the best value of the threshold on the test

set which includes both normal and attack traffic.

• We then use two different linear ML models, Linear Regression (LR) and Least Absolute Shrink-
age and Selector Operator (Lasso). We selected the most simple LR technique to create a baseline

performance. Also, Lasso is used to observe the effects of feature selection on the cumulative perfor-

mance since it is a linear model which shrinks irrelevant statistics values to zero, and we search for the

best value of the L1 term multiplier between 0.1 and 1 in increments of 0.1. Moreover, we implement

both LR and Lasso using the scikit-learn library [207] on Python.

• Early research [157] showed that the K-Nearest Neighbours Regressor (KNN) achieves highly com-

petitive results for detection of Botnet attacks, thus the KNN is one of the methods that we have im-

plemented in scikit-learn and compared against the AADRNN. Since KNN requires at least as many

neighbors as the number of samples, the number of neighbors in KNN is set to the minimum of the

number of metrics M and the number of training samples.

• A feed-forward Multi-Layer Perceptron (MLP) with two hidden layers with M neurons, followed

by an output layer also with M neurons is used. All nuerons in MLP have sigmoidal activation func-

tion. Both training and execution was performed using Keras on Python, where the MLP is trained via

the Adam optimizer.

• Lastly, we use Long-Short Term Memory (LSTM) with a single LSTM layer – M units – and three

fully connected layers including the output layer which is comprised of M neurons, and sigmoidal

activation function used for all neurons. Training and execution of is also performed using Keras on

Python and trained via Adam optimizer.

4.4.2 Malicious Traffic Detection with Offline Learning

We first evaluate the performance of the IDS with offline learning proposed in Section 4.2. To this end,

in this subsection, we start with analyzing the importance of proposed metrics and effects of using separated
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metrics on the performance of the IDS. Then, we show the performance of the IDS for varying value of

decision threshold θ; as a result, the best value of θ is obtained. During the performance evaluation for

detecting Botnet attack packets, we set p = 0.05, r = 0.001, λ+ = λ− = 0.1, P = 500 packets, and

T = 100 seconds.

Analysis on the Importance and Effects of Metric Candidates:

In order to analyze the importance of each feature candidate for the detection of Mirai botnet attacks

in the Kitsune dataset, we first perform the following analysis. For each metric, we first compute Pearson

correlation coefficient [208] between that metric and the attack label. This coefficient measures the strength

and the direction of the linear relationship between the considered metric and the attack label. Since we

desire to measure only the importance of “Metric m” for the detection of attack, we need only the strength

of the relationship so we let ρm denote the absolute value of the coefficient for Metric m.

We also compute the other coefficients as the F-ratios [209] that are calculated via the Analysis of

Variance (ANOVA) method. The value of the F-ratio corresponding to metric m measures the statistical

significance of that metric for the decision of attack. We let fm denote the normalized F-ratio for metric m

in the range [0, 1].

We then calculate the overall importance of the metrics as the combination of Pearson correlation coef-

ficient and ANOVA:

αm =
ρm + fm∑

m∈{1,...,M} (ρm + fm)
∀m ∈ {1, . . . ,M}. (4.50)

In Figure 4.3, we present the value of αm as well as the values of ρm and fm for each Metric m, m ∈
{1, 2, 3}. In this figure, we see that the importance of each of Metrics 1 and 3 is higher than that of the

Metric 2 with respect to each of αm, ρm and fm. In addition, the values of α1, ρ1 are close to those of α3,

ρ3 although there is a significant gap between f1 and f3.

Figure 4.3: Pearson correlation coefficient ρm, normalized coefficient by ANOVA fm and importance coef-

ficient αm for each Metric m, m ∈ {1, 2, 3}.

Furthermore, we evaluate the performance of the AADRNN-based IDS using either individual metrics

or all metrics at the same time to measure the effects of metrics on the performance of the IDS. Figure 4.4



4.4. OVERALL PERFORMANCE EVALUATIONS 39

shows the performance of the proposed IDS method with the selection of different metrics, as well as the

combination of all metrics. We see that AADRNN achieves the highest accuracy at 99.84% when we use all

of Metric 1, Metric 2, and Metric 3, as we do for the performance evaluations in the rest of this section.

The high detection performance result shows that the developed AADRNN is able to classify normal

and malicious traffic although it has been trained with only normal traffic. Moreover, our results show that

the accuracy of the AADRNN is more than 95% under the selection of any metric. In addition, we observe

a close relationship between the importance coefficients of metrics in Figure 4.3 and the performance of the

AADRNN in Figure 4.4.

Figure 4.4: Performance of the AADRNN-based IDS under each of Metric 1, Metric 2, Metric 3, and the

αm weighted combination of all metrics.

Selection of the Value of Threshold θ:

We now analyze the performance of the AADRNN with respect to the value of threshold θ. Figure 4.5

presents the True Positive and True Negative percentages with respect to the increasing value of θ from 0 to

0.5 with 0.01 increments.

In Figure 4.5, we see that the AADRNN is highly robust with respect to θ ∈ [0.01, 0.25]. Thus, in the

practical usage of the proposed method, we may select any value of θ in the range [0.01, 0.25] without a

significant performance loss. In addition, in this range the AADRNN is fair in detecting both attack and

normal traffic, and it achieves high performance for both.

Comparison of the AADRNN’s Performance with KNN and Lasso:

Let us now evaluate the attack detection performance of the AADRNN in more detail and compare it

with the Simple Thresholding, Lasso, and KNN methods, where both the Lasso and KNN are trained as

auto-associative memories.

In Table 4.1, we present the comparison of the detection methods with respect to each of the accuracy

and percentages of true positive, false negative, true negative and false positive. The detection methods in
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Figure 4.5: True Postive and True Negative percentages of the AADRNN for the increasing value of θ.

Table 4.1: Comparison of attack detection methods with respect to accuracy as well as each of the true

positive, false negative, true negative and false positive percentages

Attack Detection

Methods
Accuracy True Positive False Negative True Negative False Positive

AADRNN 99.84 99.82 0.18 99.98 0.02

KNN 99.79 99.79 0.21 99.75 0.25

Lasso 99.78 99.75 0.25 99.95 0.05

Simple Thresholding 93.18 93.09 6.94 93.63 6.37

this table are placed in descending order with respect to their accuracy. Our results show that AADRNN

attack detection significantly outperforms the other methods with respect to accuracy, achieving 99.82%

true positive and 99.98% true negative percentages. In addition, we see that the auto-associative networks

achieve much higher accuracy than Simple Thresholding. Among all methods, the Lasso obtains the true

negative percentage closest to the AADRNN, and significantly higher than KNN and Simple Thresholding.

Computation Time:

Figure 4.6 shows the training time of each of the AADRNN, KNN, and Lasso models, where the training

is performed for 70% of the normal traffic (83, 138 samples). While the attack detector may be trained offline

in real-life usage, the training time is not a major issue as long as it is acceptable. In the same figure, we

see that the training time of the AADRNN is less than 0.1 secs which is highly acceptable. In addition, the

training time of the AADRNN is significantly less than that of KNN; however, it is higher than that of the

Lasso method.

Figure 4.7 shows the execution time of each of the AADRNN, KNN, and Lasso models for the classifi-
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Figure 4.6: Training times of the different attack detection methods.

Figure 4.7: Execution times of the different attack detection methods.

cation, evaluated per single traffic packet. We see that the execution time of the AADRNN detector is around

0.5 µ secs. While that of all other methods is less than 10 µ secs, the KNN’s execution time is quite high,

and Lasso’s execution time is the shortest. This shows that the AADRNN and Lasso detectors are suitable

for use in real-time attack detection.

4.4.3 Malicious Traffic Detection with Incremental Learning

Since we are still considering the Mirai Botnet attack, we use the following parameter settings: p = 0.05,

r = 0.001, λ+ = λ− = 0.1, P = 500 packets, and T = 100 seconds
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Selecting Interval of Incremental Learning:

First, we evaluate the performance of the proposed IDS for varying number of training packets I (which

is the period of incremental learning) between 100 and 1000. In this way, we shall also select the best value

of I and set it for the rest of this section.

Figure 4.8 presents the average classification accuracy (over all packets) for each value of I ∈
{100, 250, 500, 750, 1000}. The results in Fig. 4.8 show that AADRNN with incremental learning achieves

its best performance for I = 750 packets, where the average accuracy equals 99.54. In addition, one may

see that AADRNN achieves acceptable accuracy for all I .

Figure 4.8: Average accuracy of AADRNN attack detector with incremental quasi-online learning for dif-

ferent values of I ∈ {100, 250, 500, 750, 1000}

Performance Comparison Against Offline Learning:

We then compare the performance of AADRNN based IDS under incremental quasi-online learning

with that under offline learning whose performance shown in Section 4.4.2. Note that since the superior

performance of AADRNN against some other ML techniques for Mirai attacks has already been shown

in the results of a previous subsection, we do not compare the performance of AADRNN with other ML

techniques in this section.

Figure 4.9 presents the percentage Accuracy, TNR, and TPR for AADRNN under “Incremental Learn-

ing” and that under “Offline Learning”, where the offline training is performed using 70% of benign traffic as

used in Section 4.4.2. We see that the accuracy of AADRNN with incremental learning is slightly lower than

that with offline learning; however, offline learning uses a significantly large number of collected packets to

train AADRNN. Moreover, the TPR results in this figure show that AADRNN with incremental learning per-

forms very close to AADRNN with offline learning for detecting malicious packets, while the performance

gap is more significant for TNR.

As an additional experiment, in Figure 4.10, we present the comparison of incremental and offline train-

ing for the same cold-start duration which is spent for the collection of I = 750 packets. When the number
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Figure 4.9: Performance comparison between AADRNN based IDS under Incremental Learning with I =

750 packets and that under Offline Learning with about 83, 000 packets

of training packets is decreased from 85, 000 to 750, we see that the performance of AADRNN significantly

decreases resulting in inferior performance to AADRNN with incremental learning.

Figure 4.10: Performance comparison between AADRNN based IDS under Incremental Learning with I =

750 packets and that under Offline Learning with 750 packets

Computation Time:

Finally, for the proposed method, Table 4.2 presents the execution time (i.e. time elapsed) for making

a decision on a single packet as well as the initialization and incremental update stages of the training

algorithm for I = 750.

The results in this table first show that the execution time of AADRNN is very low and acceptable

for real-time attack detection. Also, we see that the initialization and incremental learning of our method

take 15 ms and 4.3 ms, respectively. As observed in the evaluated dataset, 4.3 ms is slightly less than the

minimum measured time for transmission of 22 packets; that is, the parameters of AADRNN will be updated
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until the transmission of the 22nd packet after the incremental learning phase has begun.

Table 4.2: Training and execution times of the proposed attack detection method with incremental learning

Training Time

(for I = 750)

Initialization 15 msecs

Incremental Update 4.3 msecs

Execution Time 0.11 msecs

4.4.4 Simultaneous Detection of Various Types of Attacks with Offline Learning IDS

We compare the performance of AADRNN against the unsupervised state-of-the-art one class classifi-

cation technique based on the Support Vector Machine - One Class Classifier (SVM-OCC). In addition, we

compare the performance of AADRNN with that of several supervised machine learning techniques using

the same dataset, namely the LR, KNN, DT and RF, which are detailed in [210]. During the performance

evaluation for detecting various types of attacks simultaneously, we set p = 0.01, r = 1, λ+ = λ− = 0.005.

Note that we do not measure our own metrics for this evaluation task as KDD dataset provides 41 input

features for detection.

In Figure 4.11, the performance is presented with respect to Accuracy, True Negative Rate (TNR),

True Positive Rate (TPR), Precision, and F1 Score on the KDD dataset as a whole, showing that AADRNN

achieves 93% accuracy with high TNR (95.7%) and TPR (92.3%). In this results, the structure of AADRNN

is comprised of three layers with 41 neurons each resulting in a structure of 41 − 41 − 41. According to

these results, AADRNN successfully classifies both benign and attack traffic as a whole for all the test data

and attack types in the KDD dataset, although it has been trained only with a small benign traffic dataset.

Figure 4.11: Performance of the 41− 41− 41 cluster three layer AADRNN with respect to Accuracy, TNR,

TPR, Precision and F1 Score metrics for the KDD dataset taken as a whole for all attack types
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As indicated earlier, the KDD Cup’99 dataset contains a wide variety of attack types, so that the perfor-

mance of the ADRNN can differ for different attack types. To this end, Figure 4.12 displays the performance

of AADRNN for each individual type of attack in the test set. The results show that the prediction accuracy

is less than or equal to 50% for 7 out of 37 attack types while it is above 98% for 21 out of 37 attack types.

Figure 4.12: Performance of the 41− 20− 41 cluster three layer AADRNN with respect to Accuracy, TNR,

TPR, Precision and F1 Score metrics for each attack type in KDD dataset.

Results for the AADRNN with 41-20-41 Structure

During our experiments for detecting various attack types learning only from the normal traffic, we

observed that the overall performance of AADRNN can be improved for the 37 attack types available in

KDD Cup’99. To this end, we revise the structure of AADRNN as 41− 20− 41 clusters in three layers.

In Figure 4.13, we summarize the performance of the three layer 41 − 20 − 41 cluster AADRNN for

each of the individual attack types, and again we see a somewhat higher performance than that the earlier

network structure (with 41−41−41 clusters) that is shown in Figures 4.11 and 4.12. Hence, we see that the

choice of a network that offers a mapping of the data into a subspace, as offered by the 41−20−41 network,

provides higher performance. Accordingly, we use 41− 20− 41 structure for the performance comparison

against the state-of-the-art methods.

Comparison with Unsupervised and Supervised Techniques

We compare the performance of AADRNN with offline learning first with the performance of unsuper-

vised technique based on the SVM-OCC, and then with other supervised state-of-the-art machine learning

techniques. Figure 4.14 compares AADRNN with SVM-OCC with respect to Accuracy, TNR and TPR. The

results in this figure show that of the AADRNN with offline learning clearly outperforms this state-of-the-art

unsupervised one class classifier for detecting both benign and attack traffic, and the performance difference
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Figure 4.13: Performance of the 41− 20− 41 cluster three layer AADRNN with respect to Accuracy, TNR,

TPR, Precision and F1 Score metrics for the KDD dataset taken as a whole for all attack types (top) and for

each attack type (bottom).

is significant especially for detecting attack traffic.

In addition, in Table 4.3, presents the computation times of AADRNN and SVM-OCC. One may see that

AADRNN is two orders of magnitude faster than SVM-OCC. Moreover, since the training of AADRNN

requires only benign traffic and takes 1.49 s on average, AADRNN can also be trained online for some

applications.

Table 4.4 shows the results on the performance comparison between the 41− 20− 41 cluster three layer

AADRNN and other well-known machine learning techniques including the unsupervised SVM-OCC and

the supervised MLP, LR, KNN, DT, and RF, where the performance of the supervised techniques is taken as

reported in a recent publication [210].
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Figure 4.14: Comparison of the 41 − 20 − 41 cluster three layer AADRNN against the state-of-the-art one

class classifier SVM-OCC on the KDD dataset.

Table 4.3: Comparison of the 41−20−41 three layer AADRNN against a state-of-the-art one class classifier,

the SVM-OCC with respect to computation time.

Model

Total

Training Time

(seconds)

Execution Time

per Sample

(µsecs)

Mean Standard Deviation Mean Standard Deviation

AADRNN 1.49 0.03 5.13 0.08

SVM-OCC 249.7 9.44 326.3 7.59

These results show that, when evaluated with the KDD dataset, the 41− 20− 41 cluster AADRNN can

outperform these other techniques except for the MLP and DT. While the AADRNN achieves almost the

same performance as the MLP and DT, it is superior to them in terms of the Recall metric and inferior with

regard to Precision. In particular, AADRNN yields slightly lower False Negatives and slightly higher False

Positives as compared to MLP and DT. On the other hand, one may recall that AADRNN trained using only

normal traffic.

4.4.5 Compromised Device Identification with Sequential Learning

Finally, we present the performance evaluation results of CDIS during an ongoing Botnet attack in an

IoT network. Recall that we use data from Kitsune and BotIoT datasets. In order to present the methodology

of our experimental study and results more clearly, we first use the Mirai Botnet from the publicly available

Kitsune dataset [203, 204]. Then, we present the results for 6 attacks obtained from Kitsune and Bot-IoT

datasets. For the performance evaluation of the CDIS, we use the following parameter settings: r = 1,
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Table 4.4: Performance of the 41 − 20 − 41 three layer AADRNN compared to several state-of-the-art

unsupervised and supervised techniques with the KDD dataset.

Model
Metrics (%)

Accuracy Recall Precision F1 Score

Unsupervised
AADRNN 92.9 91.9 99.2 95.4

SVM-OCC 91.7 90.5 99.1 94.6

Supervised [210]

MLP with 4 layers 93 91.5 99.8 95.5

LR 81.1 76.9 99.4 86.7

KNN 92.5 90.9 99.8 95.2

DT 92.9 91.5 99.7 95.4

RF 92.7 91.1 99.9 95.3

λ+ = λ− = 0.005, and p = 1/M , where M = 6. We also set the length of a time window T = 10 secs.

Ground Truth:

Recall that Kitsune Mirai Botnet dataset contains the traffic from 107 distinct IP addresses that either sent

or receive traffic. For each of these IP addresses, we utilize an instance of the CDIS presented in Section 4.3

to perform infection detection.

The dataset contains the ground truth regarding whether a packet is an attack packet or a normal non-

attack packet. Thus, for a packet p in the dataset, a(p) denotes the binary attack label for packet p in the

dataset, with a(p) = 1 denoting an attack, and a(p) = 0 denoting a non-attack normal packet. Each packet

also contains the time t at which it is sent, and the complete representation of packet p is:

p ≡ pk(t, s, d) (4.51)

where s and d are the source and destination nodes.

The ground truth for the infection level of a device (or IP address) is defined as the ratio of the number

of attack packets to the total number of packets that are sent by device or node d in time window k:

φik =

∑
{p∈∪k

l=1P
i,D
l
} a(p)

| ∪kl=1 P
i,D
l |

, (4.52)

where P s,Dk is the set of all packets sent by s in time window k:

P s,Dk ≡
∑
d∈D

P s,dk . (4.53)

Also, the binary estimate of the ground truth is then obtained from φik as:

vik = 1
[
φik ­ Θ

]
, (4.54)
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where 0 < Θ < 1 is a threshold on the infection level to compute the binary ground truth estimate. Note

that Θ should be selected considering the desired sensitivity of the network regarding malicious packet

transmission.

Accordingly, vik is the variable that we use to test how well our attack detection schemes are working.

It is not used at all for learning since we develop a quasi-online sequential learning technique which does

not rely on prior offline learning.

In order to be able to present clear and detailed analysis, in the first part of this section, we consider

only the IP addresses in “192.168” network within the experimental setup of the used Kitsune Mirai Botnet

dataset [204]. The ordered list of IP addresses in this considered network is as follows: [192.168.1.252,

192.168.2.1, 192.168.2.101, 192.168.2.103, 192.168.2.104, 192.168.2.105, 192.168.2.107, 192.168.2.108,

192.168.2.109, 192.168.2.110, 192.168.2.111, 192.168.2.112, 192.168.2.113, 192.168.2.115,

192.168.2.117, 192.168.2.118, 192.168.2.119, 192.168.2.120, 192.168.2.121, 192.168.2.122,

192.168.2.126, 192.168.2.196, 192.168.2.255, 192.168.4.1]. Note that, during our experiments, we

do not consider any information about the characteristics of the devices to which the IP addresses belong;

that is, we treat all IP addresses as equivalent (or as individual IoT devices).

Figure 4.15: Ground truth value of the level of infection (φik) for individual IP addresses over 712 windows

Figure 4.15 displays the ground truth values of the level of infection (φik) for these IP addresses (shown

with local indexes) over 712 windows. One may see that the infection level gets significantly high for 4th,

7th, 10th, 16th, 19th, 20th and 22nd IP addresses while the infection level remains around 0 for only 1st,

8th, 15th, 17th, 18th, 23rd and 24th IP Addresses.

Based on Figure 4.15, we intuitively consider an IP address is compromised if infection level φik is

at least 0.5 (i.e. at least 50% of transmitted packets are malicious). Thus, we set Θ = 0.5 to calculate

the binary ground truth of compromised devices via (4.54). The resulting ground truth data contains 1494

positive (compromised) samples and 15594 negative samples in total over all of these 24 IP addresses over

all of 712 windows. In addition, in the binary ground truth for Θ = 0.5, 4th, 7th, 10th, 16th, 19th, 20th, and

22nd IP addresses become compromised with time.
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Selection of the Decision Threshold γi:

For each IP address i in the considered network, in order to achieve the highest performance of the

CDIS, we first analyze and select the best value of γi. To this end, the Balanced Accuracy performance of

CDIS of IP address i is measured for all γi values increasing in 0.002 intervals from 0 to 1. The measured

performance displayed in Figure 4.16, where the performance range is shown with colors which range from

red to green, also reveals that the Balanced Accuracy performance of CDIS (using AADRNN) under the

best value of γi is very close to 100% (shown with dark green) for all IP addresses except for the 16th, 19th,

20th, and 22nd IP addresses, whose performances are around 62%, 71%, 72% and 56% respectively under

the best value of γi.

Figure 4.16: Balanced Accuracy during the search for the best value of γi in CDIS with sequential training

for each IP address i ∈ {1, . . . , 24}

Furthermore, Figure 4.16 shows that the Balanced Accuracy performance of CDIS is acceptably high

for various γi values around the best value; hence, one may say that the performance of our CDIS is highly

robust with respect to the choice of γi. On the other hand, the best value of γi is considerably different

for each IP address i, and is best for successive IP addresses as follows: 0.102, 0.888, 0.998, 0.002, 0.114,

0.102, 0.002, 0.186, 0.156, 0.212, 0.102, 0.132, 0.282, 0.208, 0.102, 0.002, 0.102, 0.102, 0.002, 0.002,

0.122, 0.098, 0.102, and 0.102. Note that if several values of γi achieve the best performance, the smallest

value is selected.

Performance of the CDIS:

Using the best values of γi’s, we evaluate the performance of the CDIS (presented in Section 4.3) with

respect to Balanced Accuracy, Sensitivity, and Specificity. Figure 4.17 displays the box plot of this perfor-

mance evaluation over the considered IP addresses. Recall that Sensitivity is only presented for IP addresses

that are compromised in at least one window.

The Balanced Accuracy, Sensitivity and Specificity show that the median performance of the CDIS is

almost 100%. However there are four IP addresses for which the measured performances are the outliers.
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Figure 4.17: Box plot of the Balanced Accuracy, Sensitivity, and Specificity over considered 24 IP addresses

The Balanced Accuracy for the outliers are 72%, 71%, 62%, and 56%. While searching for the best value of

γi, we observed that these are the 16th, 19th, 20th, and 22nd IP addresses in Figure 4.16.

These results also reveal that our CDIS is able to successfully detect infection for all IP addresses

(minimum Sensitivity is 85%) but suffers from low Specificity (i.e. high false alarm rate) for outlier IP

addresses. Indeed, we observe that the reason for the low specificity of the IP addresses with the outlier

CDIS performance is that their traffic statistics do not indicate infection, and two of these IP addresses (19th

and 20th) do not receive traffic but only transmit, so that the indicators RTMs (Received Traffic Metrics) 1-4

are zero for all time windows.

Performance of the CDIS under Different ML models:

The performance of the CDIS under AADRNN is compared with that under each of LR, Lasso, KNN,

MLP, and LSTM, where the best value of decision threshold is selected via exhaustive search for each ML

model. The comparison of the performances with respect to Balanced Accuracy, Sensitivity, and Specificity

are presented in Table 4.5. The numerical results in this table are presented as the average of each measure-

ment over the IP addresses considered. For example, the Balanced Accuracy is first calculated for each IP

address; then, the average of Balanced Accuracy is computed over all IP addresses.

The results in Table 4.5 show that CDIS is able to achieve highly acceptable performances under various

ML models although some models lack the balance between Sensitivity and Specificity. On the other hand,

the best Balanced Accuracy performance of CDIS is observed under AADRNN, which achieves the most

balanced performance between Sensitivity and Specificity. It also appears that linear models (LR, Lasso

and KNN) achieve high Specificity but LR and KNN have significantly low Sensitivity. In addition, the

Sensitivity of linear models and the Specificity of MLP and LSTM are significantly low. That is, majority

of linear models cannot properly detect compromised IP addresses, while MLP and LSTM cause a high rate

of false positive alarms.

Furthermore, Table 4.6 displays the average and standard deviation, in milliseconds, of each of the

training and execution times over all IP addresses and all time windows for each ML model. Also, recall
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Table 4.5: Average percentage performance of the CDIS under different ML models over IP addresses

ML Models Balanced Accuracy Sensitivity Specificity

AADRNN 94.1 97.6 89

LR 85.6 44 87.5

Lasso 94.8 76 96.6

KNN 86.9 46.5 89.4

MLP 86 70 80.8

LSTM 85.8 73.9 79.2

Table 4.6: Training and execution times of the CDIS under different ML models (in milliseconds)

ML
Training Time Execution Time

Models Mean
Standard

Deviation
Mean

Standard

Deviation

AADRNN 52.6 15 0.3 0.4

LR 0.3 0.5 0.1 0.2

Lasso 75.1 109.9 0.1 0.3

KNN 0.5 0.5 0.4 0.5

MLP 297.9 195.3 34.2 76.7

LSTM 2219.2 1613.3 34.2 189.5

that each of the neural network models considered (i.e. AADRNN, MLP, and LSTM) has three hidden layers

with six neurons (which is the number of metrics) each. In addition to its three hidden layers, LSTM neural

network has also an LSTM layer with six units.

The results in Table 4.6 show that: 1) The mean training time of AADRNN is lower than Lasso, MLP

and LSTM, with very low standard deviation of 15 ms. However, all of the AADRNN, Lasso, MLP and

LSTM models require significantly more training time than LR and KNN. 2) Considering both the mean

and standard deviation of the execution time, AADRNN, LR, Lasso and KNN are competitive with each

other, but are much faster than MLP and LSTM.

Performance of the CDIS for a Network with 107 Distinct IP Addresses:

We now evaluate the performance of the CDIS for the extended IoT network scenario where all 107

unique IP addresses provided in the Kitsune dataset [204] are addressed instead of only considering the IPs
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in “192.168”network. To this end, Figure 4.18 (top) displays the average performance of the CDIS over IP

addresses with respect to each of Balanced Accuracy, Sensitivity and Specificity, and Figure 4.18 (bottom)

displays the box plot of the performance of the CDIS over IP addresses with respect to the same metrics.

Figure 4.18: Bar graph (top) of the average performance and box plot (bottom) of the performance of the

CDIS over all (107) IP addresses in the Kitsune Mirai dataset.

In the top of Figure 4.18 we see that our CDIS provides an average 88% Balanced Accuracy for this com-

plex network structure with 107 unique IP addresses, while both average Sensitivity is 90% and Specificity

is 79%.

More detailed results in Figure 4.18 (bottom) reveal that the Balanced Accuracy performance of the

CDIS is above 92% for 2/3 of IP addresses and above 50% for all IP addresses. That is, the Balanced

Accuracy performance is between 50% and 92% for only 36% of IPs. It is also seen that both median

Sensitivity and median Specificity are 100%; however, the number of node with lower Specificity is high

compared to Sensitivity. On these results, we also observed that Sensitivity is above 90% for 85% of the IP

addresses that are compromised at least in one time window, while Specificity is above 90% for 67% of all

IP addresses. On the other hand, for only 4 IPs, the Sensitivity is below 40%.

Furthermore, in Figure 4.19, we plot the logarithmic prediction error of the CDIS, defined as
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Figure 4.19: In this figure, the logarithmic prediction error log10(|vik − Ψi
k|), 1 ¬ k ¬ 712 of the CDIS is

plotted versus the time slot k for three IP addresses: the 1st, 10th, and 101st. Only three IP addresses were

chosen to clearly visualize the prediction errors that may be affected by sequential quasi-online training.

log10(|vik −Ψi
k|), 1 ¬ k ¬ 712, versus the slot k for three IP addresses: the 1st, 10th, and 101st. Our pur-

pose is to present the prediction errors of the quasi-online sequential learning clearly. Indeed, the results on

the 10th and 101st IP addresses show that the CDIS achieves lower prediction errors for normal non-attack

traffic after k = 100. On the other hand, the sequential training does not appear to reduce the accuracy for

the 1st IP address, which may be because this address was never compromised as shown by the ground truth

in Figure 4.15.

Performance of the CDIS on Different Datasets:

Although we mainly focused on identifying the compromised IoT devices during a Mirai Botnet attack,

the proposed IDS can also be used for different types of DDoS or DoS attacks, in which the malware spreads

over the devices. However, the proposed network statistics may or may not be effective while implementing

our CDIS for DDoS attacks other than Mirai. Accordingly, achieving a high performance for various types

of DDoS attacks may require to define and use a much larger set of statistics. In this section, we now evaluate

the performance of the CDIS for various types of DDoS attacks provided in two datasets: Kitsune [203,204]

and Bot-IoT [206].

Figure 4.20 displays the balanced accuracy results of the performance evaluation of the CDIS for the

Kitsune and Bot-IoT datasets. First of all, these results show that the proposed CDIS is able to very success-

fully identify compromised devices during Mirai Botnet attacks, with a median Balanced Accuracy of 100%

for Kitsune. Recall that the Balanced Accuracy is above 92% for 2/3 of unique IP addresses for Kitsune

dataset.

The results in Figure 4.20 also show that CDIS can achieve high performance for DDoS and DoS attacks.

On the other hand, the results for DDoS and DoS attacks, especially those use TCP and UDP protocols, are

significantly lower than those for Mirai attack. The inferior performance is mainly because the traffic statis-

tics are defined considering the Mirai Botnet attacks. For each of the DDoS HTTP and DoS HTTP, the
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Figure 4.20: Performance of CDIS using the parameters set for Mirai is evaluated for other type of attacks

on various datasets

median Balanced Accuracy performance is above 100%. We may also see that the performance of the CDIS

slightly lower for DDoS attacks on the network traffic using TCP or UDP protocols. Since the parameters

of CDIS have already been adapted for DDoS TCP and DDoS UDP datasets, our results show that commu-

nication protocols are effective on the identification performance and can be evaluated to determine more

specific metrics.

Further Remarks on the Results for Compromised Device Identification:

We first evaluated the performance of CDIS on Kitsune Mirai attack dataset for two different network

setups with 24 and 107 unique IP addresses. We also presented the performance evaluation for 6 attack data

in two different datasets, namely Kitsune and Bot-IoT. The experimental results on compromised device

identification show that:

• The CDIS achieves high performance (94% Balanced Accuracy) with low computation time for both

execution and sequential quasi-online training.

• The CDIS under AADRNN outperforms the other models (LR, Lasso, KNN, MLP, LSTM) by a

significant margin, while its computation time is very competitive with that of the fastest (simplest)

models.

• The CDIS can be used not only for Mirai, but also for various types of DDoS attacks where malware

spreads over IoT devices. However, some attack types and/or communication protocols may require

customization of traffic metrics and parameter settings of CDIS.



Chapter 5

Fully Online Self-Supervised Intrusion
Detection Framework

As the results presented in Chapter 4 as well as the results of earlier research suggest, anomaly-based

Intrusion Detection Systems are very promising in detecting zero-day attacks that are based on unknown

types of intrusions and often target vulnerable devices and networks. On the other hand, high dependency

of anomaly-based IDS on the normal traffic used for parameter optimization causes some significant chal-

lenges, such as: 1) The (expected) normal behavior of network traffic may change over time due to both

internal and external influences. For example, an IoT device in the considered network may start to generate

more data packets over time depending on the variables measured by the device, or new device(s) may be

added to the network, resulting in a considerable change in aggregated network traffic. 2) As normal traffic

will most likely differ on different networks, in order to achieve acceptable performance, the IDS should

be individually adapted for each network on which it will be implemented. To this end, the parameters of

the IDS should be optimized (i.e. learned), or the IDS should be restructured for the normal traffic of the

particular network. On the other hand, for the practical application of the IDS in end-user networks (such

as smart home IoT networks), there is very limited or no offline data collected over this network that can be

used to adapt (or train) the IDS.

In order to address these issues, in this chapter, we propose a novel fully online Self-Supervised Intrusion

Detection (namely, SSID) framework, which automatically selects normal traffic packets for learning and

decides when to update the parameters of the utilized algorithm in order to keep the algorithm up-to-date and

the detection accuracy high. The SSID framework can be used with any anomaly detection algorithm that

requires parameter optimization, providing fully online (on the fly) self-supervised learning of parameters

in parallel with real-time anomaly detection. It also completely eliminates the need for labeled or unlabeled

offline data collection, and offline training or parameter optimization. Therefore, the proposed framework

contrasts sharply with existing work [211–217] that has implemented self-supervised learning for intrusion

detection, which often utilizes offline (small-sized) labeled or unlabeled training data and pseudo-labeling.

56
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5.1 System Design of the Self-Supervised Intrusion Detection Framework

As the main contribution of this thesis, we propose the novel SSID framework to enable fully online

self-supervised learning of the parameters of IDS with no need for human intervention. This section now

presents the system design of this framework and states the preliminaries and some assumptions. To this

end, we first briefly present the detection process within the SSID framework (shown in Figure 5.1) and the

general IDS structure. Next, we explain the learning process performed in our framework.

Continuous (Uninterupted) Detection

Time
Initial Set-up of IDS

. . . . . .
Online Learning
Phase              

Online Learning
Phase       

Initial Learning
Phase           

Updating
 Parameters

Online Learning
Phase        

Updating Parameters
Updating
 Parameters

Updating
 Parameters

UPDATE
when IDS is not

trustworthy enough

Figure 5.1: Detection and learning processes of IDS within the Fully Online Self-Supervised Intrusion De-

tection (SSID) framework

5.1.1 Intrusion Detection Process

As shown in Figure 5.1, within the SSID framework, there are two main operations performed, intrusion

detection and learning. Intrusion detection is the main operation performed by IDS and is not modified by

SSID. That is, intrusion detection (as an operation) is defined only by a particular IDS algorithm used in

SSID. Therefore, in this section, we may only present the IDS with a general structure with regard to the

requirements of SSID. On the other hand, we can say that our SSID framework ensures that IDS makes

accurate decisions by updating its parameters with online self-supervised learning, and it performs intrusion

detection uninterruptedly and continuously.

We may note that regarding the communication (data transfer) between intrusion detection and online

self-supervised learning processes in SSID, first, the parameters of IDS are updated for detection during the

initial learning and at the end of each learning phase. In addition, the decisions made by IDS are provided to

use in any learning phase since the data collection within both initial and online learning phases is performed

in a self-supervised fashion which enables automatic labeling of the packet samples as benign or malicious.

General Structure of IDS:

The SSID framework does not consider a specific algorithm for IDS or have strict requirements for it,

except that it is based on ML or some other function with learnable parameters and has a certain range

of inputs and outputs. In addition, although the SSID framework can also be used with both anomaly and

signature based detection algorithms, the anomaly based algorithms shall perform better as the real-time
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network traffic contains only the normal “benign” traffic until an attack occurs. Therefore, we now present

the general structure of IDS shown in Figure 5.2 that is taken into account during our analysis.
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Figure 5.2: Structure of IDS

As shown in Figure 5.2, for each packet i (or bucket of packets), the IDS estimates the probability that

packet i is malicious based on the provided traffic metrics. Accordingly, the input of the IDS is the vector of

M metrics that are observed (or calculated) for the actual traffic packet i. This vector ofM observed metrics

is denoted by xi = [x1
i , . . . , x

m
i , . . . , x

M
i ], and xi ∈ [0, 1]M . The output of the IDS, which is namely the

intrusion decision and denoted by yi, is the probability that packet i is malicious and takes value in [0, 1].

The structure of IDS is comprised of an ML model (which can also be considered a function with

learnable parameters) with W parameters. Therefore, the ML-based IDS is a learned function that maps the

metrics observed for the actual traffic packet i to the intrusion probability for that packet, i.e. f : xi 7→ f(xi)

for f(xi) = yi, so that f : [0, 1]M → [0, 1].

Example of an IDS:

We now present an example of the structure of IDS that satisfies our criterion. This example is displayed

in Figure 5.3. This IDS is mainly comprised of an ML model and a decision maker component.

Machine Learning
based
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Memory

Decision
Maker

Observed metrics
for the actual

traffic

}

Expected metrics
for benign traffic

}

Probability of
intrusion

}with       learnable parameters
(i.e. weights and biases)

Figure 5.3: Example for the Structure of IDS

An IDS structure that can learn only from normal traffic when no attack traffic is available in the network

may provide higher performance under self-supervised learning. Therefore, in this example of IDS structure,

the ML model is used to create an Auto-Associative Memory (AAM) that is used to reconstruct benign traffic

metrics – which are the expected metrics according to the norm of the actual traffic learned by the AAM

– from observed metrics, which may be the indicators of malicious traffic. The vector of expected metrics,
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which is the output of ML-based AAM, for packet i is denoted by x̂i = [x̂1
i , . . . , x̂

m
i , . . . , x̂

M
i ]. In order

words, the ML-based AAM is a learned function that maps the noisy or disordered metrics to the normal

metrics, i.e. faam : xi 7→ faam(xi) for faam(xi) = x̂i, so that faam : [0, 1]M → [0, 1]M .

Furthermore, within this IDS, any particular decision maker calculates the probability of attack. In fact,

based on the output of ML-based AAM, the decision maker can measure the deviation of the actual metrics

xi from the expected metrics x̂i. The main criterion for this decision maker is that it requires no human

intervention or parameter settings based on offline data. On the other hand, it is possible for the decision

maker to learn and update parameters along with the learning process of the ML during the online operation.

5.1.2 Online Self-Supervised Learning Process
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Figure 5.4: Block diagram of the learning process in SSID framework for the online self-supervised learning

of the parameters of IDS

In parallel with attack detection, our SSID framework provides online self-supervised learning of IDS

parameters which is shown as the upper process line in Figure 5.1. As seen in that figure and Figure 5.4

which shows the learning process in SSID, the online self-supervised learning process starts with the initial

learning phase (namely, l = 0) and continues with successive online learning phases.

Since the network traffic characteristics may vary with time substantially affecting the detection perfor-

mance of IDS, it is crucial to update the parameters of the IDS online in parallel to its real-time operation.

The parameter updates performed by online learning ensure that the detection of the IDS is trustworthy by

improving its performance and keeping it up-to-date for the recent traffic characteristics. As one of the main

purposes of SSID, online learning also prevents collecting and labeling big data for offline training so it

saves time and resources. On the other hand, there may be online available datasets to validate the perfor-

mance of the IDS (or to train it additionally) on the traffic of the same or other IoT networks, and the IDS

can also be pretrained prior to the learning process if any valuable data is available.

In the remainder of this subsection, in order to be able to clearly present the SSID framework, we shall

only explain the main functionalities of both initial and online learning phases through the block diagram

displayed in Figure 5.4. Then, in Section 5.2, the detailed comprehensive methodology (including all blocks

in Figure 5.4) will be presented.
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Initial Learning:

The initial learning phase in SSID can be considered a special case of the proposed methodology of self-

supervised learning, which allows IDS to be used from its initial setup and updates the parameters of the

IDS frequently achieving the desired performance gradually and quickly. That is, we update the parameters

of the IDS for each selected packet until a certain criterion on the trustworthiness of the IDS is satisfied.

In detail, as shown in the top block of Figure 5.4, during the initial learning phase in SSID, the parameters

of the IDS are updated (using any desired algorithm) for each packet that is selected for learning via our

self-supervised packet selection methodology. Whether the parameters of the IDS are updated or not, SSID

checks the trust based completion criterion of the initial learning phase l = 0 aiming to complete this

phase as soon as the IDS is trained enough to make trustworthy decisions. To this end, it first calculates

the trustworthiness of the IDS, namely the “trust coefficient” denoted by Γ ∈ [0, 1], which indicates the

confidence of SSID in any decision made by the IDS. Since the IDS does not have any information about

the network traffic patterns yet, SSID cannot judge the decisions of the IDS and starts the initial learning

process with Γ = 0 meaning that there is no trust in the decisions of the IDS.

Subsequently, SSID checks the criterion on the trust coefficient for completing of the initial learning

phase l = 0. This criterion basically measures if SSID’s trust in the IDS is greater than a threshold Θ (which

refers to the minimum desired trust):

if Γ ­ Θ, complete initial learning and set l = 1 (5.1)

That is, if Γ ­ Θ, the initial learning phase is completed, and the next packet will be considered for the first

phase l = 1 of continuous learning.

Online Learning:

After the initial learning is completed, the parameters of IDS are updated via an online learning phase

l ­ 1 when the trust of SSID in the IDS is unacceptably low. As the lower block in Figure 5.4 shows, the

parameters of the IDS are updated for a collected batch of packets when the trustworthiness of the IDS is

not acceptable anymore. When SSID is in the online learning phase l ­ 1, each packet i selected by our

self-supervised packet selection method is collected into the batch of training packets, denoted by Bl.

Then, SSID checks the trust-based criterion to update the parameters of the IDS. Inversely with the initial

learning phase, SSID now updates the parameters of the IDS if Γ < Θ, at least K packets are collected for

learning (i.e. |Bl| ­ K), and there is no attack detected by the IDS:

if Γ < Θ and |Bl| ­ K and
1
I

i∑
j=i−I+1

yj ¬ γ, update parameters and set l = l + 1 (5.2)

where I is the number of packets to calculate the average of the intrusion decisions, γ is the intrusion

threshold, and K is provided by the user considering properties of the network and learning algorithm.

Limit of minimum K packets is added only to provide practical efficiency for training.

That is, SSID waits for a considerable decrease in the trustworthiness of the decisions of IDS to update

the parameters since Γ is known to be already greater than Θ at the end of the initial learning phase l = 0.

In this way, the learning is performed when it is essential.
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On the other hand, if an intrusion is detected, i.e. if the average output of the IDS is greater than γ,

SSID clears the batch of collected packet samples, Bl. With this cleanup, SSID aims to prevent the IDS

from learning any false negative instances since false negative outputs are very likely to occur just before an

attack is detected. That is,

if
1
I

i∑
j=i−I

yj > γ, empty Bl (5.3)

5.2 Methodology of Self-Supervised Learning for Intrusion Detection

We now present our proposed methodology to train the utilized IDS in a self-supervised fashion enabling

the fully online property of SSID. In other words, this section explains the details of the learning process in

SSID, which are shown as subblocks in Figure 5.4. Recall that the learning process in SSID is independent

of the learning (parameter update) algorithm and ML model used in the IDS; therefore, it can be used with

any learning algorithm and any ML model that satisfy the assumptions in Section 5.1.

5.2.1 Self-Supervised Packet Selection

As the first operation of the learning process in SSID, each packet i is decided to be used in learning

the parameters of the IDS. We now present the methodology to select packets, which are observed during

real-time detection, to be used in an upcoming learning phase. The packet selection is executed in a self-

supervised manner that only considers the output of the IDS together with SSID’s trust in it.

Let p−i and p+
i respectively be the probability of selecting packet i to be used as a benign or malicious

packet sample in the training of IDS, and qi be the probability of rejecting i to use in training. That is, we

select the packet i as the sample of a benign packet with probability p−i or that of an attack packet with

probability p+
i to use it in training, or the packet i is not included in the training set with probability qi. Also,

recall that yi ∈ [0, 1] is the output of IDS for packet i.

Since we assume that there are no packet labeling mechanisms or labor to prepare packet data for learn-

ing, we select each packet i based on the output of IDS (which is the estimation of the probability of packet

i being malicious) considering how trustworthy IDS is. Therefore, we shall also define a trust coefficient Γ

to measure the trustworthiness of IDS at any time based on the representativeness of the packet samples that

IDS learned until the end of the last learning phase and the generalization ability of IDS from these samples.

Accordingly, we start by defining p+
i as

p+
i ≡ (trust in the IDS) (estimated probability of packet i being malicious) (5.4)

p+
i = Γ yi (5.5)

We further define p−i similarly to p+
i :

p−i ≡ (trust in the IDS)(estimated probability of packet i being normal) (5.6)

p−i = Γ (1− yi) (5.7)

Subsequently, since

p+
i + p−i + qi = 1, (5.8)
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the probability qi of not selecting the packet i for training is:

qi = 1− (p+
i + p−i )

= 1− Γ. (5.9)

Recall that SSID starts with Γ = 0 since the IDS does not have yet any information about the network

traffic patterns at the initial learning phase. That is, the output of the IDS is calculated using the initially set

parameter values (if available) and will not be able to achieve accurate detection for the particular traffic.

In addition, for selecting the first packet, the parameters of the IDS are updated for the first time using

p−i = 1, p+
i = 0, and qi = 0. Thus, SSID selects the first packet to learn as a benign sample. This is why an

IDS that can learn from only benign traffic is expected to learn faster and perform better under SSID.

5.2.2 Trustworthiness of IDS

Now, we determine the trust coefficient Γ for the IDS in the SSID framework. Through this coefficient,

we aim to include both the effects of changes in the normal behavior of network traffic over time and the

generalization ability of the IDS into the packet selection model for learning.

To this end, we first define the factor of “representativeness”, denoted by Crep, for the traffic packets

that are learned by the IDS. The representativeness factor Crep takes a value in the range of [0, 1] and

measures how much the packets used for learning (during all of the past learning phases) represent the total

observed traffic. In addition, we define the factor of “generalization ability”, denoted by Cgen, of the IDS.

The generalization factor Cgen takes a value in the range of [0, 1] and is calculated only at the end of each

parameter update since it is the only time when the parameters of the IDS are updated. These two factors

shall respectively be presented in Section 5.2.3 and Section 5.2.4.

Accordingly, in order to evaluate the trustworthiness of the intrusion decisions, we determine the trust

coefficient Γ by combining the representativeness of packets learned with the generalization ability of the

IDS simply as the multiplication of Crep and Cgen:

Γ = CrepCgen (5.10)

In this way, Γ simultaneously measures how much the IDS is able to learn and generalize from provided

traffic packets and how much these packets reflect actual traffic patterns. That is, through this trust coeffi-

cient, we evaluate how much information the IDS can generalize from the traffic packets provided to make

decisions for the upcoming traffic.

5.2.3 Representativeness of Learned Traffic

In order to calculate the representativeness of the packet traffic used during the earlier learning phases,

we compare the learned (or memorized) traffic with the total observed traffic through Kullback-Leibler

(KL)-Divergence [218]. Therefore, there are two sets of traffic packets for comparison, the packets used in

the previous learning phases up to and including l (where l is the latest completed learning phase) and the

normal packets that are observed by IDS during continuous detection.

During this comparison, we assume that the packet traffic consists of two main properties, inter-

transmission time (TT ) and the packet length (PL) since these properties can be considered as the basis
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of traffic metrics, which are the inputs of the IDS. We further assume that packet arrivals – any sample

collected from the network traffic – has a Poisson distribution so that the inter-transmission time TT is an

Exponentially-distributed random variable. The packet length PL is also assumed to be an Exponentially-

distributed random variable because the header length is considerably larger than the message length for

the majority of IoT applications. In addition, TT and PL are considered to be independent. On the other

hand, for particular applications, these assumptions and the traffic model can be changed and the below

methodology can easily be adapted for the new traffic model with a new set of assumptions.

Furthermore, let STTl and SPLl respectively denote the sets of the inter-transmission times and lengths

of all packets learned at the end of l, and STTo and SPLo respectively denote the same of all normal packets

observed during continuous detection. In addition, according to our assumptions, STTl and STTo have expo-

nential distributions with means of 1/λl and 1/λo while SPLl and SPLo have exponential distributions with

means of 1/µl and 1/µo.

KL-Divergence for Inter-Transmission Times:

For the set of inter-transmission times,DKL(STTo ||STTl ) is KL-Divergence from STTl to STTo measuring

the information gain achieved if STTo would be used instead of STTl which has been used during the learning

phases of IDS. Note that small KL-Divergence means low information gain, and DKL(STTo ||STTl ) = 0

shows that STTo and STTl provide the same amount of information. Accordingly, using the definition of

KL-Divergence [218], we first calculate DKL(STTo ||STTl ), which can shortly be denoted by DTT
KL, as

DTT
KL =

∫ ∞
−∞

f(x;λo)log(
f(x;λo)
f(x;λl)

) dx (5.11)

= Ef(x;λo)
[
log(

f(x;λo)
f(x;λl)

)
]

= Ef(x;λo)
[
log(

λo
λl

)− x(λo − λl)
]

where f(x;λo) and f(x;λl) denote the probability distribution functions of STTo and STTl respectively with

parameters λo and λl. This leads to the result of

DTT
KL = log(

λo
λl

)− (λo − λl)
λo

(5.12)

KL-Divergence for Packet Lengths:

Similarly with transmission times, for the set of packet lengths, DKL(SPLo ||SPLl ) is KL-Divergence

from SPLl to SPLo , which is shortly denoted by DPL
KL, and is calculated as

DPL
KL =

∫ ∞
−∞

f(x;µo)log(
f(x;µo)
f(x;µl)

) dx (5.13)

= Ef(x;µo)
[
log(

f(x;µo)
f(x;µl)

)
]

= Ef(x;µo)
[
log(

µo
µl

)− x(µo − µl)
]

where f(x;µo) and f(x;µl) denote the probability distribution functions of SPLo and SPLl respectively with

parameters µo and µl. This results in:

DPL
KL = log(

µo
µl

)− (µo − µl)
µo

(5.14)
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Representativeness Factor based on Normalized KL-Divergence:

For both transmission times and packet lengths, we now obtained the KL-Divergence between the set

of observed packets and the set of packets learned; that is, we measure the representativeness of the packets

that have already been used to train the IDS. However, the KL-Divergence cannot directly be used as a rep-

resentativeness factor because of the following reasons: 1) It has no upper bound but the representativeness

factor Crep ∈ [0, 1]. 2) KL-Divergence is a decreasing function of the similarity between two sets but we

need an increasing function of that as the name “representativeness” suggests. 3) This factor should be the

combination of DTT
KL and DPL

KL.

Therefore, in order to obtain the representativeness factor, we first normalize each of DTT
KL and DPL

KL as

DTT
KL−norm = e−D

TT
KL , (5.15)

DPL
KL−norm = e−D

PL
KL . (5.16)

which solve the issues 1) and 2) stated above. Each of these normalized divergence measures can also be

written in terms of only the traffic parameters:

DPL
KL−norm = e

−
[
log(λo

λl
)− (λo−λl)

λo

]

=
[ λl
λo

e−
(λl−λo)
λo

]
(5.17)

Similarly,

DPL
KL−norm = e

−
[
log(µo

µl
)− (µo−µl)

µo

]

=
[ µl
µo

e
− (µl−µo)

µo

]
(5.18)

Then, we combine DTT
KL−norm and DPL

KL−norm into the “representativeness factor” Crep as

Crep = c1D
TT
KL−norm + c2D

PL
KL−norm (5.19)

where c1 ¬ 1 and c2 ¬ 1 are positive constants that satisfy c1 + c2 = 1.

In order to weigh transmission times and packet lengths equally, we take c1 = c2 = 0.5. That is, we

take their average:

Crep =
1
2
[
DTT
KL−norm +DPL

KL−norm
]

(5.20)

=
1
2
[
e−D

TT
KL + e−D

PL
KL
]

We can rewrite Crep only in terms of the traffic parameters using (5.17) and (5.18):

Crep =
1
2

[ λl
λo

e−
(λl−λo)
λo +

µl
µo

e
− (µl−µo)

µo

]
(5.21)
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5.2.4 Generalization Ability of IDS

As stated above, we consider the generalization ability of the IDS as one of two factors that define the

trustworthiness of intrusion decisions. To this end, the aim of this subsection is to determine the generaliza-

tion ability of the IDS in simple terms to make its computation as easy as possible using the available mea-

sures during the execution of SSID. Accordingly, we start with the basic definition of generalization [219]:

Generalization ≡ Data + Knowledge

stating that the generalization depends on the “Data”, which is denoted by ∆ and refers to the adequacy of

the packet samples that are used for learning, and the “Knowledge”, which is denoted by κ and refers to the

knowledge of the IDS obtained from packets learned. Therefore, we define the generalization factor Cgen as

Cgen = c3 ∆ + c4 κ (5.22)

where c3 and c4 are positive constants such that c3, c4 ¬ 1, and c3 + c4 = 1.

Data Adequacy (∆):

We evaluate the adequacy of the packet samples that are used for learning with respect to the number of

learnable parameters in the IDS. Although there is no hard rule for determining the adequacy of the learning

data (i.e., the number of training samples required) for a given ML model, most studies have shown its

relationship to the total number of learnable parameters in the model and taken the minimum number of

required training samples as a multiple of the number of parameters [220].

Therefore, we first define the counterpart of ∆ (namely the inadequacy of data), denoted by ∆̃, as the

ratio of the number of learnable parameters in the IDS to the total number of packet samples used for

learning up to and including learning phase l:

∆̃ = min
( W∑l

k=0 |Bk|
, 1
)

(5.23)

where
∑l
k=0 |Bk| is the total number of packet samples that are sequentially used to learn model parameters

until the end of learning phase l. Clearly, ∆̃ takes value in [0, 1]. WhileW is a constant number and |Bl| ­ 1

for any learning phase l (in which a learning is performed), liml→∞(∆̃) = 0. In addition, ∆̃ = 1 when∑l
k=0 |Bk| ¬W .

We can then define the adequacy of learning data as

∆ = 1− ∆̃ =
[
1−min

( W∑l
k=0 |Bk|

, 1
)]

(5.24)

As a result (liml→∞(∆) = 1), and as expected, the adequacy of the aggregated data consisting of packet

samples used in the learning stages increases over time. Also, recall and note that we already include the

representativeness of these packet samples directly in the trust coefficient of the IDS.

Knowledge (κ):

We consider knowledge to be the measure of the ML model’s expected performance for the upcoming

traffic packets. Subsequently, we measure the knowledge (i.e. expected performance) of the IDS based on

its performance on the packet samples used for learning and on the online available validation data.



66 CHAPTER 5. THE SSID FRAMEWORK

To this end, in this paper, we consider the worst-case scenario when there is no validation data available.

Let E(l) denote the empirical error measured at the end of learning phase l on both packet samples learned

and validation data (if available), such that 0 ¬ E(l) ¬ 1. We then define the knowledge κ as the counterpart

of the exponentially weighted moving average of empirical errors for all learning phases up to and including

the l–th phase:

κ = 1−
l∑

k=0

(
1
2

)(l−k+1) E(k) (5.25)

where the multiplier is set as 1/2 to keep the value of κ in [0, 1]. That is, if the empirical training error

decreases with the successive learning phases (i.e. E(l) is the decreasing function of l), the knowledge of the

IDS increases converging to its maximum.

In practice, at the end of each learning phase l, κ can easily be updated using only its previous value and

the empirical error E(l) as

κ← 1
2
− 1

2

[
E(l)− κ

]
(5.26)

Generalization Factor:

We now easily calculate the generalization factor Cgen combining the “data adequacy” ∆ (5.24) and

“knowledge” κ (5.25) using the definition of the generalization factor (5.22):

Cgen = c3

[
1−min

( W∑l
k=0 |Bk|

, 1
)]

+ c4

[
1−

l∑
k=0

(
1
2

)(l−k+1) E(k)
]

(5.27)

We particularly set c3 = c4 = 0.5 representing that the data and knowledge are equally important for

generalization:

Cgen = 1−
min

(
W/

∑l
k=0 |Bk|, 1

)
+
∑l
k=0 (1/2)(l−k+1) E(k)

2
(5.28)

5.3 Results

We evaluate the performance of SSID framework with AADRNN-based IDS for two tasks of malicious

traffic detection and compromised device identification which have been presented for both offline and

quasi-online learning in Section 4.2 and Section 4.3, respectively.

Accordingly, we first present the performance evaluation results for malicious traffic detection during

Mirai Botnet attack. To this end, we use the well-known Kitsune dataset [203,204], which contains 764, 137

packet transmissions of both normal and attack traffic cover a consecutive time period of roughly 7137

seconds.

We then present the performance evaluation results for compromised device identification on six differ-

ent attack data from two datasets, Kitsune [204] and Bot-IoT [206].

In addition, we use the same AADRNN-based IDS presented in Chapter 4 with the following simple

decision makers for the malicious traffic detection:

yi =
1
M

M∑
m=1

|xmi − x̂mi |, (5.29)

and for compromised device identification:

yi = max
m∈{1,...,M}

(|xmi − x̂mi |). (5.30)
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During the online learning phase, the parameters of the IDS are updated using the incremental learning

algorithm given in Section 4.2.4 for malicious traffic detection and sequential learning algorithm given in

Section 4.3.4 for compromised device identification.

Moreover, since we use an anomaly-based algorithm that learns only the benign traffic, we take the

learning error as the mean of estimated attack probabilities for packets in learning batch Bl:

E(l) =
1
|Bl|

|Bl|∑
i=1

yi. (5.31)

We also set the parameters of SSID as follows: Θ = 0.95, I = 10, K = 100, and γ = 0.25. That is, SSID

aims to keep the trust in the IDS above 0.95 while it considers a packet as malicious if the output of the IDS

is above 0.25. In addition, we want to update parameters using at least K = 100 packets for computational

efficiency.

5.3.1 Performance Evaluation for Malicious Traffic Detection

We first evaluate the performance of SSID for malicious traffic detection during Mirai Botnet attack.

Figure 5.5 displays the ROC curve, where the x-axis of this figure is plotted in logarithmic scale. We see

that AADRNN-based IDS trained under our novel SSID framework achieves significantly high TPR above

0.995 even for very low FPR about 10−5.

Figure 5.5: ROC curve for the performance of AADRNN-based IDS under the SSID framework for mali-

cious traffic detection

In more detail, in Figure 5.6, we present the predictions and Γ of SSID with respect to time. This figure

reveals an important fact that while the IDS is completely indecisive at the beginning, SSID framework

enables it to learn the normal traffic very quickly. As a result, SSID makes significantly low false alarms

although it learns – fully online – during real-time operation based only on its own decision using no external

(offline collected) dataset. We also see that Γ accurately reflects the trustworthiness of decisions made by

AADRNN. In addition, although Γ slightly decreases as a result of random packet selection, especially after

attack starts, the parameters of AADRNN are not updated by SSID as the traffic is detected as malicious.
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Figure 5.6: Predictions of SSID and the value of trust coefficient Γ with respect to time

Comparison with Quasi-Online and Offline Learning:

We further compare the performance of AADRNN under SSID with the performances of AADRNN

with quasi-online and offline learning. Recall (from Section 4.4.2) that all methods with offline learning are

trained using approximately 83, 000 benign traffic packets while the AADRNN with incremental (quasi-

online) learning trained periodically for the window of 750 packets using AADRNN’s own decision where

the first 750 packets transmitted are assumed to be normal packets during the cold-start of the network.

Figure 5.7: Performance comparison between the AADRNN under SSID and the AADRNN with incremen-

tal (quasi-online) and offline learning

Figure 5.7 displays the performances of SSID as well as the AADRNN with incremental (quasi-online)

and offline learning. The results in this figure first reveal that the AADRNN trained fully online using

the SSID framework achieves competitive results with the AADRNN trained offline using approximately

83, 000 packets while the SSID significantly outperforms the AADRNN with incremental learning with
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respect to all performance metrics. It is worth to note that the SSID learned 4, 161 packets in total along

with real-time attack detection.

In contrast with offline and incremental (quasi-online) learning, SSID framework assumes only that the

first packet is known to be benign so the duration of cold-start equals the transmission of a single traffic

packet. That is, using no offline dataset or requiring no cold-start, the SSID framework is able to train an

ML-based attack detector to achieve considerably high performance which is highly competitive against the

ML models trained on significantly large dataset.

A Different ML Model – MLP – under the SSID Framework:

In order to further analyze the impact of the proposed SSID framework on the performance of a different

ML model, we evaluate the performance of the well-known MLP under the SSID framework (called SSID-

MLP) and compare it with the performance of MLP with offline and incremental learning, respectively. The

results of this performance evaluation is presented in Figure 5.8.

Figure 5.8: Performance comparison between the SSID-MLP and the MLP with incremental (quasi-online)

and offline learning

The results in Figure 5.8 show that SSID-MLP achieves slightly higher Accuracy and TPR than MLP

with offline learning although MLP with offline learning raises no false alarms (i.e. achieves 100% TNR).

Moreover, we see that SSID-MLP significantly outperforms the MLP model that is trained via incremental

learning periodically for every 750 packets based on its own output.

Comparison of Different ML Models:

We further compare the performances of AADRNN under SSID (called SSID-AADRNN for clarity)

and SSID-MLP with those of the well-known ML models, including KNN and Lasso with offline learning.

Figure 5.9 displays the performances of all compared models with respect to Accuracy, TPR and TNR.

The results in this figure show that SSID-MLP achieves the second-best performance with respect to all

performance metrics. In addition, both SSID-MLP and SSID-AADRNN achieves highly competitive results
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with the offline trained ML models, while the SSID framework completely eliminates the need for data

collection and labeling.

Figure 5.9: Performance comparison between the ML models under the SSID framework and those with

offline learning

5.3.2 Performance Evaluation for Compromised Device Identification

We now evaluate the performance of the CDIS presented in Section 4.3 under the SSID framework, in

short SSID-CDIS, on two different datasets Kitsune and Bot-IoT. For each dataset, the performance of SSID-

CDIS is compared with the original CDIS technique with sequential learning. Recall from Section 4.3 that

the compromised device identification is performed for 10 seconds long time window. In order to measure

the performance we use the balance accuracy.

Figure 5.10 displays the performance of SSID-CDIS and its comparison with CDIS to identify compro-

mised IP addresses during each of the Mirai Botnet and SYN DoS attacks available in the Kitsune dataset.

Results in this figure show that although using the SSID framework provides the same performance as using

sequential learning to identify compromised devices during a Mirai Botnet attack, it significantly improves

the overall performance of CDIS during a SYN DoS attack. In detail, the box plot on the right of Figure 5.10

shows that the SSID-CDIS achieves 100% median balanced accuracy when there is only one outlier IP ad-

dress with around 85% accuracy. On the other hand, sequentially trained CDIS has two outlier IP addresses

with performances of 50% and 1%, respectively.

Figure 5.11 displays the performance of SSID-CDIS and its comparison with CDIS to identify com-

promised IP addresses during DDoS and DoS attacks using different communication protocols available

in the Bot-IoT dataset. The results in this figure mainly show that the use of the SSID framework enables

the decision system CDIS to achieve higher identification performance compared to the use of sequential

learning for the majority of attack types. In more detail, starting with the box plot displayed at the far left of

this figure, we observe the following results: 1) For DDoS HTTP attack, the overall performance is almost

the same for SSID and sequential learning. However, as expected, performance varies slightly for individual
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Figure 5.10: Performance comparison of the CDIS trained under the SSID framework with that under se-

quential quasi-online learning on Kitsune dataset

Figure 5.11: Performance comparison of the CDIS trained under the SSID framework with that under se-

quential quasi-online learning on Bot-IoT dataset

IP addresses. 2) For DoS HTTP attack, using SSID improved the performance by 2% on average with a

minimum of 75% balanced accuracy. 3) For DDoS TCP, SSID significantly improved the median accuracy

by 18%, where SSID-CDIS achieves 91% median accuracy. In addition, while the balance accuracy of CDIS

with sequential learning is below 80% (with a minimum of 49%) for 9 out of 13 unique IP addresses, the

balance accuracy of SSID-CDIS is equal to 79% for only 2 IP addresses and above 80% for the rest. 4)

Similar to DDoS TCP attack, SSID provides significant performance improvement to identify compromised

devices during DDoS UDP attack. The median accuracy increased by 11%, achieving above 88% balanced

accuracy for all IP addresses.



Chapter 6

Conclusions and Future Work

This thesis focused on online learning of ML-based intrusion detection systems, which are especially

targeted at detecting zero-day attacks, aiming to perform its learning fully online in parallel with real-time

detection, eliminate the need for both labeled and unlabeled offline-collected datasets, and pave the way for

adapting the time-variant network traffic behaviour via sequential parameter updates. To this end, this thesis

first developed an AADRNN-based IDS with offline unsupervised learning, using only normal “benign”

network traffic, with low computation time and considerably high accuracy. Then, this IDS is enhanced

with quasi-online learning based on newly developed incremental and sequential learning algorithms for

malicious traffic detection and compromised device identification, respectively. Performance evaluation re-

sults of offline and quasi-online learning IDS revealed the high – close to offline learning – accuracy of

quasi-online learning with a requirement of a small size dataset prior to the real-time operation. That is,

although developing fully online learning IDS and achieving competitive performance with offline learning

IDS are still needed, the results for quasi-online learning IDS showed that the online learning approach is

highly promising for developing an IDS that learns and operates completely in real-time. Subsequently, as

the main contribution of this thesis, the novel Self-Supervised Intrusion Detection (SSID) framework has

been proposed to enable fully online learning of the parameters of any ML-based IDS, and its performance

is evaluated on publicly available datasets revealing that ML models, that are used with the SSID framework

using no offline training data, achieve highly competitive performance compared to the offline learning IDS.

In the remainder of this chapter, we first summarize the content of individual chapters in Section 6.1 and

present some insights into the future work in Section 6.2.

6.1 Summary

In Chapter 1, we first briefly presented the necessary background on the Internet, networked systems,

and the IoT. We then introduced the considered problem, highlighted the main contributions of the present

thesis, listed the publications of the author, and outlined the thesis.

In Chapter 2, we reviewed cybersecurity breaches in networked systems, focusing on the most common

types of attacks, and examined cybersecurity assurance methods in three categories: intrusion detection

systems, authentication and access control mechanisms, and cryptography techniques. Then, we presented

a literature review of security issues at each of the perception, network, and application layers of an IoT

system.
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In Chapter 3, we discussed the use and importance of attack and intrusion detection in IoT networks.

Although the majority of existing works focus on detecting malicious traffic, the importance of detecting

compromised device identification was also discussed. Subsequently, we presented a comprehensive litera-

ture review of the works aimed at detecting: 1) DoS and DDoS Botnet attacks specifically in IoT networks,

2) zero-day (unknown types) attacks, and 3) compromised devices or nodes (i.e. bots).

In Chapter 4, we developed an anomaly-based IDS with offline and quasi-online learning to detect both

malicious traffic and compromised IoT devices during Botnet or zero-day attacks. This IDS is comprised

of three main functionalities for extracting network traffic metrics, estimating expected metric values for

normal “benign” traffic, and making a final decision on whether the analysed metrics indicate an intrusion.

Respectively for these functionalities within the proposed IDS, the following modules and algorithms are

developed and utilized:

• In order to observe the impact of an intrusion on the network traffic and capture the signatures of

an attacker, we proposed original network traffic metrics specifically for each of the tasks malicious

traffic detection and compromised device identification. In particular, for malicious traffic detection,

three metrics were presented to measure the density of total network traffic while for compromised

device identification, six metrics were presented to measure the density of received and transmitted

traffic by an individual device.

• We created an auto-associative memory using a DRNN model, called AADRNN, to estimate the

metric values expected to be observed during the normal operation of the considered network, i.e.

without any intrusion. To this end, the DRNN model is trained using only the normal traffic packets

to retrieve the actual values of the metrics from their noise added versions.

• The final decision is made by comparing the expected metric values (i.e. the output of the AADRNN)

with the actual metric values. To this end, we developed the novel Statistical Whisker-based Benign

Classifier algorithm that detects an intrusion if the actual metrics differ significantly from the expected

estimated metrics. The significance of the difference, as well as all parameters of the algorithm, is

determined based only on the packet samples used for training.

The performance of the proposed IDS evaluated for malicious traffic detection and compromised device

identification during Botnet attacks as well as for detecting zero-day (unknown) attacks. During the perfor-

mance evaluation, we used publicly available datasets – namely Kitsune, KDD Cup’99, and BotIoT – and

compared the performance of the proposed IDS against six well-known ML models. The results revealed

that the proposed IDS outperforms the existing methods significantly for both detecting malicious traffic and

identifying compromised devices. In addition, quasi-online sequential and incremental learning algorithms

have shown high potential for the development of high-performance online learning IDS, which requires

low computation time and small data.

In Chapter 5, we proposed the novel Self-Supervised Intrusion Detection (namely SSID) framework

designed to train any given IDS – whose parameters are calculated using the network traffic – fully online

with no need for human intervention. The SSID framework comprises two successive learning stages initial

learning and online learning. Initial learning aims to quickly adapt the IDS parameters for the network

where the IDS is newly deployed, while online learning aims to update the parameters whenever an update
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is required to ensure the high detection accuracy of the IDS. During the real-time operation of the IDS, in

parallel to the detection, the SSID framework performs the following main tasks:

• It continually estimates the trustworthiness of intrusion decisions to identify normal and malicious

traffic, measuring the ability of the IDS to learn and generalize from data provided by SSID and the

extent to which this data can represent current network traffic patterns.

• In order to provide training data for the IDS, the SSID framework selects and labels network traffic

packets in a self-supervised manner based only on the decisions of IDS and the trust of SSID in those

decisions.

• Considering the trustworthiness of the IDS, the selected training packets, and the latest state of net-

work security, the SSID framework determines when to update the IDS parameters.

In this way, the proposed SSID framework eliminates the need for offline data collection, prevents human

errors in data labeling, avoids labor costs for model training and data collection through experiments, and

– as the most important advantage in terms of performance – enables IDS to easily adapt time varying

characteristics of the network traffic.

In this chapter, we also evaluated the performance of the SSID framework for two tasks, malicious traffic

detection and compromised device identification, aiming to enhance the security of an IoT network. For

malicious traffic detection, two different ML models, DRNN and MLP, have been deployed with the SSID

framework and tested on the Kitsune dataset. The results revealed that the ML models trained under the

SSID framework requiring no offline dataset achieve considerably high performance compared to the same

models with offline and quasi-online (incremental) learning. For compromised device identification, the

performance of the state-of-the-art CDIS has been tested under sequential learning and the SSID framework

on the data of 6 different cyberattacks provided by two public datasets Kitsune and Bot-IoT. The results

showed that the use of SSID significantly improves the performance of CDIS for the majority of cases.

6.2 Future Work

We now highlight several directions for future work based on the outcomes and foci of this thesis:

• This thesis first presented the development and evaluation of an anomaly-based IDS, which is com-

prised of Auto-Associative Deep Random Neural Network and Statistical Whisker-based Benign Clas-

sifier. The performance evaluation results showed the success of the anomaly-based IDS for various

different cases and types of attacks. On the other hand, this thesis did not examine the implementation

and performance of the developed IDS in the real IoT test environment. Therefore, future work shall

first implement the IDS on a real IoT system and measure its effects on system performance.

• Subsequently, we have proposed the SSID framework targeting to enable fully online self-supervised

learning of the IDS parameters. The results revealed that SSID provides fast and successful learning

for different ML-based IDS with requiring no human intervention and prior training. Accordingly,

we shall evaluate the use of SSID for adapting a pre-trained IDS to use across different unlearned

networks as it seems to be a promising approach for fast, self-supervised, and successful adaptation

of the IDS parameters for various networks.
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• It would also be interesting to examine security assurance methods targeting distributed systems that

combine the SSID framework with Federated Learning and attack prevention or mitigation algorithms.

A successful integration of the SSID framework with Federated Learning shall provide secure, dis-

tributed and self-supervised online learning for collaborative systems.

• Furthermore, since the proposed self-supervised learning framework is not limited to intrusion de-

tection, future studies may also examine its applications on anomaly detection and other prediction

problems in different time-varying systems.
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[116] H. Sinanović and S. Mrdovic, “Analysis of mirai malicious software,” in 2017 25th International

Conference on Software, Telecommunications and Computer Networks (SoftCOM). IEEE, 2017, pp.

1–5.

[117] J. Margolis, T. T. Oh, S. Jadhav, Y. H. Kim, and J. N. Kim, “An in-depth analysis of the mirai botnet,”

in 2017 International Conference on Software Security and Assurance (ICSSA). IEEE, 2017, pp.

6–12.

[118] R. Vishwakarma and A. K. Jain, “A survey of DDoS attacking techniques and defence mechanisms

in the IoT network,” Telecommunication systems, vol. 73, no. 1, pp. 3–25, 2020.

[119] S. Mergendahl, D. Sisodia, J. Li, and H. Cam, “Source-end DDoS defense in IoT environments,” in

Proceedings of the 2017 workshop on Internet of Things security and privacy, 2017, pp. 63–64.

[120] M. M. Salim, S. Rathore, and J. H. Park, “Distributed denial of service attacks and its defenses in iot:

a survey,” The Journal of Supercomputing, vol. 76, pp. 5320–5363, 2020.

[121] N. Ravi and S. M. Shalinie, “Learning-driven detection and mitigation of DDoS attack in IoT via

SDN-cloud architecture,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3559–3570, 2020.

[122] Y. Jia, F. Zhong, A. Alrawais, B. Gong, and X. Cheng, “Flowguard: An intelligent edge defense

mechanism against IoT DDoS attacks,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9552–

9562, 2020.

[123] B. Gupta, P. Chaudhary, X. Chang, and N. Nedjah, “Smart defense against distributed denial of service

attack in IoT networks using supervised learning classifiers,” Computers & Electrical Engineering,

vol. 98, p. 107726, 2022.

[124] C. Li, Z. Qin, E. Novak, and Q. Li, “Securing sdn infrastructure of iot–fog networks from mitm

attacks,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1156–1164, 2017.



BIBLIOGRAPHY 85

[125] J. J. Kang, K. Fahd, S. Venkatraman, R. Trujillo-Rasua, and P. Haskell-Dowland, “Hybrid routing for

man-in-the-middle (mitm) attack detection in IoT networks,” in 2019 29th International Telecommu-

nication Networks and Applications Conference (ITNAC). IEEE, 2019, pp. 1–6.
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[197] H. Bahşi, S. Nõmm, and F. B. La Torre, “Dimensionality reduction for machine learning based IoT

botnet detection,” in 2018 15th International Conference on Control, Automation, Robotics and Vision

(ICARCV), 2018, pp. 1857–1862.

[198] E. Gelenbe, “Random neural networks with negative and positive signals and product form solution,”

Neural Computation, vol. 1, no. 4, pp. 502–510, 1989.

[199] E. Gelenbe and Y. Yin, “Deep learning with random neural networks,” in 2016 International Joint

Conference on Neural Networks (IJCNN), 2016, pp. 1633–1638.

[200] E. Gelenbe and Y. Yin, “Deep learning with dense random neural networks,” in International Confer-

ence on Man–Machine Interactions. Springer, 2017, pp. 3–18.

[201] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse prob-

lems,” SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009.

[202] N.-y. Liang, G.-b. Huang, P. Saratchandran, and N. Sundararajan, “A fast and accurate online sequen-

tial learning algorithm for feedforward networks,” IEEE Transactions on Neural Networks, vol. 17,

no. 6, pp. 1411–1423, 2006.

[203] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensemble of autoencoders for

online network intrusion detection,” in The Network and Distributed System Security Symposium

(NDSS) 2018, 2018.

[204] “Kitsune Network Attack Dataset,” August 2020. [Online]. Available: https://www.kaggle.com/

ymirsky/network-attack-dataset-kitsune

[205] “KDD Cup 1999 Data.” [Online]. Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html

[206] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of realistic

botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset,” Future Gen-

eration Computer Systems, vol. 100, pp. 779–796, 2019.

https://www.kaggle.com/ymirsky/network-attack-dataset-kitsune
https://www.kaggle.com/ymirsky/network-attack-dataset-kitsune
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


BIBLIOGRAPHY 91

[207] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research,

vol. 12, pp. 2825–2830, 2011.

[208] K. Pearson, “Note on regression and inheritance in the case of two parents,” Proceedings of the Royal

Society of London, vol. 58, no. 347-352, pp. 240–242, 1895.

[209] R. G. Lomax, Statistical concepts: A second course. Lawrence Erlbaum Associates Publishers,

2007.

[210] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman,

“Deep learning approach for intelligent intrusion detection system,” IEEE Access, vol. 7, pp. 41 525–

41 550, 2019.

[211] H. M. Song and H. K. Kim, “Self-supervised anomaly detection for in-vehicle network using noised

pseudo normal data,” IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1098–1108,

2021.

[212] Z. Wang, Z. Li, J. Wang, and D. Li, “Network intrusion detection model based on improved byol

self-supervised learning,” Security and Communication Networks, vol. 2021, pp. 1–23, 2021.

[213] X. Zhang, J. Mu, X. Zhang, H. Liu, L. Zong, and Y. Li, “Deep anomaly detection with self-supervised

learning and adversarial training,” Pattern Recognition, vol. 121, p. 108234, 2022.

[214] H. Kye, M. Kim, and M. Kwon, “Hierarchical detection of network anomalies: A self-supervised

learning approach,” IEEE Signal Processing Letters, vol. 29, pp. 1908–1912, 2022.

[215] E. Caville, W. W. Lo, S. Layeghy, and M. Portmann, “Anomal-e: A self-supervised network intrusion

detection system based on graph neural networks,” Knowledge-Based Systems, vol. 258, p. 110030,

2022.

[216] M. Abououf, R. Mizouni, S. Singh, H. Otrok, and E. Damiani, “Self-supervised online and

lightweight anomaly and event detection for IoT devices,” IEEE Internet of Things Journal, vol. 9,

no. 24, pp. 25 285–25 299, 2022.

[217] W. Wang, S. Jian, Y. Tan, Q. Wu, and C. Huang, “Robust unsupervised network intrusion detection

with self-supervised masked context reconstruction,” Computers & Security, vol. 128, p. 103131,

2023.

[218] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathematical statis-

tics, vol. 22, no. 1, pp. 79–86, 1951.

[219] O. Bousquet, S. Boucheron, and G. Lugosi, “Introduction to statistical learning theory,” Advanced

Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2-14,

2003, Tübingen, Germany, August 4-16, 2003, Revised Lectures, pp. 169–207, 2004.



92 BIBLIOGRAPHY

[220] A. Alwosheel, S. van Cranenburgh, and C. G. Chorus, “Is your dataset big enough? sample size

requirements when using artificial neural networks for discrete choice analysis,” Journal of choice

modelling, vol. 28, pp. 167–182, 2018.


	Introduction
	Motivation
	The Internet of Things
	IoT Security

	Problem Statement and Thesis Contributions
	Publications of the Author
	Publications in This Thesis
	Publications of the Author Published During His Doctoral Studies but Not Included in the Scope of This Thesis

	Thesis Outline

	Cybersecurity in Networked Systems
	Breaches of Cybersecurity in Networked Systems
	Phishing Attacks
	Malware-based Attacks
	Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) Attacks
	Eavesdropping and Modification Attacks
	Unauthorized Access and Insider Threats

	Methods and Means to Assure the Security of Cybersystems
	Intrusion (Attack) Detection
	Authentication & Access Control
	Cryptography

	Security Issues in IoT Devices and Networks
	Perception Layer
	Network Layer
	Application Layer


	Intrusion Detection in the Internet of Things Networks
	Intrusion Detection as a Means to Enhance Cybersecurity
	IoT Intrusion Detection
	Denial of Service (DoS) Attacks
	Botnet based Distributed Denial-of-Service (DDoS) Attacks
	Different – New – Types of Unknown (Zero-day) Attacks

	Compromised Device (Bot) Identification

	Intrusion Detection System with Offline and Quasi-Online Learning
	Review of Deep Random Neural Network 
	Malicious Traffic Detection with Offline and Quasi-Online Learning
	Metric Extraction and Preprocessing
	Auto-Associative Memory with DRNN (AADRNN)
	Statistical Whisker based Benign (Non-Attack) Classification
	Incremental Learning for Malicious Traffic Detection

	Compromised Device Identification System with Sequential Quasi-Online Learning 
	Defining the Traffic Metrics
	Structure of DRNN Used
	The Infection Classification
	Sequential Quasi-Online Learning

	Overall Performance Evaluations
	Experimental Setup
	Malicious Traffic Detection with Offline Learning
	Malicious Traffic Detection with Incremental Learning
	Simultaneous Detection of Various Types of Attacks with Offline Learning IDS
	Compromised Device Identification with Sequential Learning


	Fully Online Self-Supervised Intrusion Detection Framework
	System Design of the Self-Supervised Intrusion Detection Framework
	Intrusion Detection Process
	Online Self-Supervised Learning Process

	Methodology of Self-Supervised Learning for Intrusion Detection
	Self-Supervised Packet Selection
	Trustworthiness of IDS
	Representativeness of Learned Traffic
	Generalization Ability of IDS

	Results
	Performance Evaluation for Malicious Traffic Detection
	Performance Evaluation for Compromised Device Identification


	Conclusions and Future Work
	Summary
	Future Work

	Bibliography

