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Abstract—The process of quantifying trust considers the fac-

tors that affect it, which can be applied to identify malicious

behavior, reduce uncertainty, and facilitate decision-making.

Traditional trust evaluation methods based on statistics and

reasoning, rely heavily on domain knowledge, which limits their

practical applications. Graph Neural Networks (GNNs) are a

new Machine Learning (ML) paradigm that can revolutionize

the evaluation of trust, by modeling relationships as graphs to

simplify relevant data and automating end-to-end evaluation.

Thus, a variety of GNN-based trust evaluation models have

been developed for different applications. However, there is still

a gap in the literature regarding a review on these advances

with discussion about remaining challenges. To bridge this gap,

we conduct the first review on GNN-based trust evaluation.

We first propose a set of criteria in terms of trust-related

attributes, correctness, functionality, and overhead. Then, we

propose a taxonomy of existing GNN-based trust evaluation

models, followed by a review using the proposed criteria to

analyze their pros and cons. A quantitative analysis of the recent

cutting-edge models is also provided. Based on the review and

experimental results, we identify key challenges and suggest

future research directions.

Index Terms—Graph neural networks, trust evaluation, trust

assessment, trust prediction, trust.

I. INTRODUCTION

Trust evaluation plays a crucial role in cybersecurity. It
offers a valuable approach to quantify trust by considering
the factors that affect trust. It has been widely applied into
various cybersystems, such as social networks, Cyber-Physical
Systems (CPS), communication networks, and fog/cloud com-
puting systems. In these systems, trust evaluation can assist in
intrusion detection, service selection, task assignment, access
control, data fusion, trustworthy routing, recommendation,
incentives, system optimization, and so on [1].

Traditional trust evaluation models can be classified into
statistical models, reasoning models, and Machine Learning
(ML) models [2]. The statistical models use extensive in-
teraction data and simple statistical methods to assess trust.
The effectiveness of these models relies on weight selection
and data availability, making it difficult to evaluate the trust-
worthiness of new users or those with few interactions. The
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reasoning models infer trust using carefully-designed rules
such as Subjective Logic [1]. However, such models tend to
be overly idealized and lack adaptability into complex and
dynamic real-world scenarios. In contrast, the ML models can
learn intricate patterns from big data to make them applicable
across different contexts, showing significant potential.

Graph Neural Networks (GNNs) are a relatively new type of
ML model designed to handle graph-structured data, offering
outstanding advantages in trust evaluation [2]. First, trust
relationships between entities in various cybersystems can be
naturally represented as graph data, where nodes represent
different types of entities and edges depict their trust rela-
tionships. Second, the message-passing mechanism of GNNs
enables trust propagation and aggregation, thus satisfying basic
trust properties, such as conditional transferability. Moreover,
GNNs provide an end-to-end evaluation manner, allowing
raw graph data to be directly fed into GNN models, thereby
simplifying the process of evaluation.

We can find other reviews on trust evaluation or GNNs in the
literature. For instance, Wang et al. [1] reviewed ML methods
for trust evaluation, but did not discuss GNNs. While some
reviews have addressed GNNs and their variants, their use in
trust evaluation has not yet been surveyed. The absence of
a dedicated literature review on GNN-based trust evaluation,
along with a lack of comprehensive evaluation criteria and
technical classifications, hinders the understanding of advances
offered by GNNs for the open problems in this field.

To this end, in this paper, we review GNN models for
trust evaluation. We begin by proposing a set of criteria that
GNN-based trust evaluation models should follow, concerning
trust-related attributes, correctness, functionality, and over-
head. Then, we introduce a taxonomy of these models and
conduct a thorough review by employing our proposed criteria
as a measure to justify their pros and cons. Additionally,
we perform experimental analyses on cutting-edge GNN-
based trust evaluation models to uncover in-depth insights.
Finally, according to our review and experimental findings, we
identify key challenges and propose future research directions
to advance the research on GNN-based trust evaluation.

II. BACKGROUND KNOWLEDGE

This section introduces the fundamental knowledge of trust
and trust evaluation, as well as the basics of GNNs and a
workflow of GNN-based trust evaluation.
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Fig. 1: Workflow of GNN-based trust evaluation.

A. Trust and Trust Evaluation
Trust can be defined as the confidence or belief of one entity

in another regarding a specific context. It can mitigate potential
risks inherent in social communications and interactions. Trust
holds several key properties, including subjectivity, dynamic-
ity, context-awareness, asymmetry, conditional transferability,
and composability [2], explained in Section III-A1.

Trust evaluation or trust assessment is the process of quan-
tifying trust of a trustor in a trustee by taking the factors
that affect trust into consideration, including security, usability,
maintainability, reliability, etc. Herein, the “trustor” refers
to an entity placing trust, while the “trustee” is an entity
being trusted. Using ML for trust evaluation is also known as
trust prediction, as ML typically uses past interaction data to
predict future trust relationships. Trust evaluation is one of the
important means for identifying internal and external attackers,
mitigating uncertainty, and facilitating decision-making [2].

B. Graph Neural Networks
GNNs are a class of ML models specifically designed for

graph-structured data that consist of nodes and edges. In such
graphs, nodes can represent users, devices, and atoms in net-
works like social networks, industrial CPS, Internet of Things
(IoT), and molecules, while edges represent connections or
interactions between these nodes [3, 4]. The core of GNNs
is their message-passing mechanism: each node receives mes-
sages (including node attributes and edge features) from its
neighbors, aggregates them, and updates its own representation
(i.e., embedding) based on the aggregated messages [5]. This
process is performed iteratively over multiple hops, enabling
GNNs to capture complex patterns and dependencies within
the graph.

C. GNN for Trust Evaluation
GNNs have shown impressive potential across diverse ap-

plications, such as social networking analysis, traffic analysis,
and resource allocation [3]. This success has attracted re-
searchers to revolutionize trust evaluation using GNNs. Fig. 1
presents a workflow of GNN-based trust evaluation. First, trust
relationships between nodes are modeled as a static or dynamic
graph, where edge weights represent varying levels of trust.
Then, this graph is fed into a graph representation learning
module. Leveraging the message-passing mechanism, trust
information is propagated and aggregated based on the graph

structure, resulting in the generation of node embeddings.
Finally, a prediction module utilizes different combinations of
these embeddings to predict/quantify node trust, trust relation-
ships between nodes, or group trust.

GNN for Trust vs. Trustworthy GNNs: GNN-based trust
evaluation models are designed to predict trust levels, whereas
the trustworthiness of GNNs focus on such aspects as ro-
bustness, privacy, fairness, and explainability of GNN models.
Although both are related to “trust”, they differ in research
objectives and application scenarios. This paper focuses on
the applications of GNNs in trust evaluation.

III. EVALUATION CRITERIA

This section proposes a set of criteria in terms of trust-
related attributes, correctness, functionality, and overhead,
according to which we can comprehensively analyze the
strengths and weaknesses of existing GNN-based trust evalua-
tion models in order to identify key challenges. The taxonomy
of these criteria is illustrated in Fig. 2.

A. Trust-Related Attributes

Trust-related attributes are integral elements that impact the
accuracy of trust evaluation models. These attributes encom-
pass trust properties, node characteristics, and heterogeneity.
Models considering these attributes can well represent real-
world trust relationships and have potential to achieve high
accuracy.

1) Trust Properties: Trust has some basic properties that
should be incorporated into GNN-based trust evaluation mod-
els, as listed below. Although subjectivity is one intrinsic
nature of trust, we exclude it herein for two reasons: i)
GNNs aim to assess trust using objectively available data (e.g.,
interactions), and ii) interaction data, such as ratings given by
a trustor to a trustee, inherently reflect the trustor’s subjective
perspective.

• Dynamicity: Trust changes with new interactions and
tends to decay over time. For instance, recent interactions
are typically more important than historical ones [6].
Hence, a trust evaluation model should take into account
trust dynamicity and discriminate the significance of trust
relationships formed over time.

• Context-awareness: The level of trust between a trustor
and a trustee varies across different contexts. For instance,
a person may trust someone’s mathematical ability but
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Fig. 2: Taxonomy of evaluation criteria.

not his athletic skills. As such, considering contextual
information is crucial for fine-grained trust evaluation.

• Conditional transferability: Trust is propagative or condi-
tionally transitive, suggesting that one might extend trust
in another entity recommended by a trusted intermediary.
Recognizing this nuanced property is vital for accurately
modeling how trust extends across connections, leading
to the formation of trust chains.

• Composability: Due to conditional transferability, a
trustor may establish multiple trust chains towards a
trustee. In this case, the trustor needs to combine trust
information received from different chains to derive an
overall trust level [5]. A trust evaluation model that con-
siders composability can effectively extract and leverage
sufficient information towards precise evaluation.

• Asymmetry: It implies that the level of trust one individ-
ual places in another may not be equally reciprocated.
This property stems from differences in individual sub-
jective perceptions. It also emphasizes the distinct roles in
trust evaluation, where a node can act either as a trustor
or a trustee. A trust evaluation model should account for
these two possible roles to comprehensively capture the
asymmetry of trust relationships.

2) Node Characteristics: Node characteristics encompass
the inherent attributes of the nodes themselves. Taking social
networks as an example, these attributes include age, occupa-
tion, and hobbies of user nodes. This information is crucial for
evaluating social trust, as trust establishment is often related to
user characteristics [7]. Thus, involving node characteristics is
beneficial in developing effective GNN-based trust evaluation
models.

3) Heterogeneity: Heterogeneity refers to graphs with more
than two types of nodes or edges [8]. Compared to homoge-
neous graphs, heterogeneous graphs excel at modeling com-
plex real-world networks [4]. For example, social networks
show heterogeneity through diverse user-to-user and user-to-
item interactions, both of which are valuable for trust evalua-
tion. Consequently, GNN models should support heterogeneity

to embrace rich information to gain high evaluation accuracy
and practical applicability.

B. Correctness
Correctness quantifies the effectiveness of trust evaluation

models using metrics such as F1-score, Average Precision
(AP), Accuracy, Mean Absolute Error (MAE), Balanced Ac-
curacy (BA), the Area Under the ROC Curve (AUC), and
Matthews Correlation Coefficient (MCC). Each metric pro-
vides unique insights into model effectiveness and is ap-
plicable in different scenarios. For instance, BA and MCC
remain effective when a dataset is imbalanced, while MAE
is suitable for regression tasks where trust values are con-
tinuous. Additional details on these metrics can be found in
references [2, 9, 10].

C. Functionality
Functionality refers to the functions that a GNN-based trust

evaluation model supports. We consider five types of functions:
robustness, explainability, scalability, privacy preservation, and
fine-grainedness. The more functions a model supports, the
more applicable it is across various contexts.

1) Robustness: Robustness refers to the capability of a
GNN-based trust evaluation model to resist attacks, no matter
they target the trust evaluation or the GNN model itself.

a) Attacks on trust evaluation: There are numerous at-
tacks on trust evaluation [1], and we introduce five common
types. Bad-mouthing and good-mouthing attacks occur when
malicious nodes manipulate ratings to undermine the trustwor-
thiness of a well-behaved node or boost the trustworthiness
of a malicious node. On-off attacks (i.e., conflict behavior
attacks) involve attackers alternately exhibiting honest and
dishonest behaviors, allowing them to maintain a certain
level of trust within a system, making them still possible
to achieve destructive goals. Collusion attacks occur when
multiple attackers conspire to manipulate the result of trust
evaluation. In Sybil attacks, a malicious node has multiple
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identities to make it possible to influence the evaluation on
other nodes’ trustworthiness.

b) Attacks on GNNs: Apart from trust-related attacks,
inherent vulnerabilities within the GNN model can lead to
adversarial attacks during both training and testing phases [2].
In the training phase, attackers can inject false or harmful sam-
ples into the training data to degrade the model’s performance,
known as poisoning attacks. In the testing phase, attackers
manipulate input data to cause the model to produce incorrect
evaluation results, known as evasion attacks.

2) Explainability: Explainability refers to how easily hu-
mans can understand the trust evaluation results or operations
of a GNN model. GNNs function like a black box, mak-
ing their results difficult to follow, reducing user trust and
hindering their widespread adoption [2]. Therefore, studying
explainability from both spatial and temporal aspects is crucial
to enhance the model’s trustworthiness and user acceptance.

3) Scalability: Scalability refers to the capability of a
model to remain effective without a significant increase in
overhead as the graph size increases. Real-world networks
often exhibit very large scales. Therefore, GNN models need
to address the challenge of scaling to large graph structures
while maintaining high performance.

4) Privacy Preservation: Privacy Preservation refers to
safeguarding the privacy of individual users’ information
during trust evaluation, preventing the disclosure or misuse
of sensitive data. Trust evaluation often necessitates examin-
ing sensitive interactions between users. Thus, GNN models
should incorporate privacy preservation measures to align with
user expectations or government regulations.

5) Fine-Grainedness: Fine-grainedness describes the abil-
ity of a trust evaluation model to predict various levels of
trust, which is critical for two reasons. First, by modeling
trust at multiple levels or with a continuous digital value, the
model can capture meaningful node representations. Second,
this ability facilitates nuanced decision-making, making the
model broadly applicable. Thus, fine-grained trust evaluation
is highly preferred, as widely supported by traditional trust
evaluation methods.

D. Overhead
Overhead represents the costs of training and using a GNN-

based trust evaluation model, mostly including the costs spent
on computation and storage. Simple yet effective models are
preferred in both the ML community and practical appli-
cations. For example, IoT devices are inherently resource-
constrained, making it infeasible to deploy heavy trust eval-
uation models. In this paper, we focus on examining the
computational and storage overhead of these models using big
O notation, while restricting our analysis to one-hop neighbors
for simplicity.

IV. GNN-BASED TRUST EVALUATION MODELS

In this section, we first present a taxonomy of existing
GNN-based trust evaluation models, followed by a detailed
review on them by employing the proposed criteria as an
evaluation measure. Table I summarizes and compares the

reviewed models regarding our proposed criteria except cor-
rectness. Furthermore, we perform an quantitative analysis on
the correctness of cutting-edge evaluation models, as shown
in Table II.

A. Taxonomy
Based on whether time is incorporated, we classify the

existing models into two primary categories: static model
and dynamic model, refer to Fig. 3. We further divide the
static model into three categories: graph convolution, graph
attention, and chain-based models, depending on the way
of trust propagation. The dynamic model can be classified
into discrete-time and continuous-time models according to
temporal partitioning methods. In what follows, we introduce
each category in detail.

Techniques

Static Dynamic

Graph Convolution Graph Attention Chain-Based Discrete-Time Continuous-Time

Fig. 3: Taxonomy of GNN-based trust evaluation models.

1) Static Model: The static model focuses on static graphs
(or snapshots) captured at a specific time instance and learns
node representations exclusively based on structural informa-
tion (e.g., trust relationships). Depending on trust propagation
methods, static models can be divided into three categories:

a) Graph convolution model: In the graph convolution
model [9, 11–13], trust information is propagated with equal
weights. Specifically, GNNs employ a convolutional operation
to update node representations, leveraging features of indi-
vidual nodes and their local neighborhoods. This is the most
straightforward and efficient manner of trust propagation.

b) Graph attention model: The graph attention model [7,
8, 14] propagates trust information with varying weights by
employing an attention mechanism. It assigns coefficients to
adjacent nodes based on their significance to target nodes [7,
8], which allows the model to focus on critical information,
such as node importance or special trust relationships, within
a network.

c) Chain-based model: Essentially, the above two types
of models propagate trust using the message-passing mecha-
nism of GNNs. Instead, the chain-based model [5] explicitly
propagates trust through trust chains, which are sequences
of nodes with trust relationship extensions. By defining trust
chains from one node to another, some basic trust properties
can be effectively supported and enhanced. For instance, trust
chains are inherently directional, making them compatible with
trust asymmetry.

2) Dynamic Model: The dynamic model is capable of
handling dynamic graphs, where trust relationships or node
features change over time. It incorporates time-series infor-
mation through carefully-designed time modeling methods,
enhancing its ability to capture the temporal evolution of trust
relationships. Depending on the method employed for time
modeling, the dynamic models can be categorized into two
categories:
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a) Discrete-time model: The discrete-time model [2, 10]
represents dynamic graphs using a sequence of time-ordered
snapshots observed at different timeslots. It first learns spatial
features within each snapshot and then captures temporal pat-
terns across different snapshots using recurrent methods [10]
or position-aware attention mechanisms [2]. The discrete-
time models are efficient and simple but may lose structural
dependencies across snapshots.

b) Continuous-time model: The continuous-time
model [6] represents dynamic graphs using streaming
interactions that update in real time. It employs a time
encoding function to map a continuous-time domain into a
vector space, fully utilizing the timestamps of interactions.
While the continuous-time models excel at capturing subtle
changes in trust relationships over time, the process of
encoding temporal features could incur expensive overhead.

B. Review on Static Models

1) Graph Convolution Models: Lin et al. [9] proposed the
first GNN-based trust evaluation model called Guardian in
Online Social Networks (OSNs). They defined popularity trust
(in-degree) and engagement trust (out-degree) to model trust
asymmetry. By stacking multiple trust convolutional layers,
OSN users are able to receive trust propagated from their
multi-hop neighbors, thus satisfying conditional transferability
and composability. Leveraging localized graph convolutions,
Guardian accelerates trust evaluation by up to 2,827→ with
comparable accuracy compared to a neural network-based
method, demonstrating its high scalability for large-scale net-
works. Additionally, it can predict trust relationships with four
levels, owning potential to support fine-grained evaluation.
However, Guardian studies a homogeneous network, ignoring
the heterogeneous nature of real-world networks.

Building upon the architecture of Guardian [9], researchers
have adapted it for various scenarios. Zhan et al. [11] devel-
oped a Trust Reinforcement Evaluation Framework (TREF)
to assist worker recruitment in mobile crowdsourcing. This
framework, based on Guardian, incorporates expert knowl-
edge to fully address conditionally transitive and composable
natures of trust. It introduces a trust benefit layer to select
a worker group with mutual trust, which is particularly im-
portant for the fulfillment of crowdsourcing tasks through
multiple-worker collaboration. Since this framework is rooted
in Guardian, it meets the same criteria as Guardian. However,
its scalability is not empirically validated, and the introduction
of expert knowledge may limit its generality.

In addition to this, Jiang et al. [12] proposed a trust-
based fraud detection model in Social Internet of Things
(SIoT). This model uses a Guardian [9]-like architecture to
derive user embeddings, and thus can also support conditional
transferability and composability. Differently, it investigates
trust in multi-relation scenarios and introduces a trust-aware
neighbor difference aggregation method to amplify the dif-
ferences between normal users and fraudsters. By assigning
varying importance to user embeddings learned under different
relations, this model addresses graph heterogeneity. Neverthe-
less, its scalability remains untested. Fine-grainedness is not

available as the focus of this work is on fraud detection rather
than trust evaluation.

Existing studies isolate users’ preferences from their social
relationships, while Wang et al. [13] argued that they influence
each other. As such, they proposed JoRTGNN by considering
this mutual influence. JoRTGNN learns users’ trust embed-
dings using a user-user trust network based on Balance Theory.
Meanwhile, it learns user interaction embeddings and item em-
beddings using a user-item interaction network through a graph
convolution mechanism. By designing a joint loss for trust
prediction and item recommendation, JoRTGNN facilitates
their mutual influence. It achieves conditional transferability
and composability by stacking multiple graph convolution
layers. By incorporating both user-user and user-item relations,
JoRTGNN supports heterogeneity. However, the inclusion of
these diverse relations also limits its scalability. Moreover,
JoRTGNN does not model two roles in trust evaluation, failing
to satisfy asymmetry. Only trust and distrust relationships can
be predicted, lacking fine-grainedness.

Additional Remarks: The above four models effectively
capture intricate relationships between nodes through graph
convolution mechanisms, surpassing traditional trust evalua-
tion methods. However, they assign uniform weights to differ-
ent neighbors during trust propagation and aggregation, which
fails to accurately reflect reality. Additionally, they simplify
network modeling by focusing on a static snapshot, which not
only ignores the dynamic nature of trust but may also lead
to the mistaken use of later interactions to predict past trust
relationships. Contextual information and node characteristics,
which are crucial for accurate evaluation, are not addressed
at all. Moreover, the lack of considerations on robustness,
explainability, and privacy preservation limits their practical
significance. The computational and storage complexities of
these models are shown in Table I.

2) Graph Attention Models: To address the issue of graph
convolution models overlooking the importance of different
neighboring nodes, Jiang et al. [7] proposed GATrust based
on graph attention mechanisms in OSNs. GATrust considers
multi-aspect properties of users, including user features (e.g.,
personal hobbies), topological structure, and known social
relationships. Thus, node characteristics are well incorporated.
Similar to Guardian [9], GATrust defines popularity trust and
engagement trust to address asymmetry. By incorporating a
graph attention layer, GATrust fuses these properties with
varying importance, enabling conditional transferability and
composability. It also supports fine-grained evaluation by mod-
eling trust at different levels. However, the integration of multi-
faceted user properties increases computational overhead and
limits scalability. Moreover, heterogeneity is not supported.

Except for node characteristics, Badr et al. [14] argued that
incorporating edge features can also improve evaluation accu-
racy. They proposed GBTrust in Peer-to-Peer (P2P) networks
by taking into account edge direction and features, such as
transaction value/frequency and local trust. GBTrust initially
divides a graph into two subgraphs based on node roles in
trust relationships, supporting asymmetry. It then employs an
attention mechanism to differentiate the influence of edge
directions and multi-dimensional features, providing a nuanced
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TABLE I: Summary and comparison of GNN-based trust evaluation models.

Techniques References Scenarios
Trust-Related Attributes Functionality Overhead

Trust properties NC Het Robustness Explainability Sca PP FG Computational Overhead Storage Overhead
Dyn CA CT Com Asy ATE AG Spa Tem

Static

Graph Convolution

Guardian [9] OSN ↑ ↑
↓ ↓ ↓

↑ ↑ ↑ ↑ ↑ -
↓

↑
↓

O(NF 2
2 + EF2) O(E + F 2

2 +NF2)
TREF [11] MC ↑ ↑

↓ ↓ ↓
↑ ↑ ↑ ↑ ↑ - - ↑

↓
O(NF 2

2 + EF2) O(E + F 2
2 +NF2)

T-FrauDet [12] SIoT ↑ ↑
↓ ↓ ↓

↑
↓

↑ ↑ ↑ - - ↑ - O(NF 2
2 + EF2 + PF2) O(E + F 2

2 +NF2 + PF2)
JoRTGNN [13] OSN ↑ ↑

↓ ↓
↑ ↑

↓
↑ ↑ ↑ - - ↑ ↑ O(NF 2

1 + EF1 + PF1) O(E + F 2
1 +NF1 + PF1)

Graph Attention
GATrust [7] OSN ↑ ↑

↓ ↓ ↓ ↓
↑ ↑ ↑ ↑ - - ↑

↓
O(NF 2

3 + EF3) O(E + F 2
3 +NF3)

GBTrust [14] P2P ↑ ↑
↓ ↓ ↓ ↓

↑ ↑ ↑ ↑ - - ↑
↓

O(NF 2
4 + EF4) O(E + F 2

4 +NF4)
KGTrust [8] SIoT ↑ ↑

↓ ↓ ↓ ↓ ↓
↑ ↑ ↑ - - ↑ ↑ O(NF 2

1 + EF1 + PF1) O(E + F 2
1 +NF1 + PF1)

Chain-Based TrustGNN [5] OSN ↑ ↑
↓ ↓ ↓

↑ ↑ ↑ ↑
↓

- - ↑
↓

O(NF 2
2 + EF2) O(E + F 2

2 +NF2)

Dynamic
Discrete-Time

DTrust [10] OSN
↓

↑
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↑ ↑ ↑ ↑ ↑ ↑ - ↑
↓

O(NF 2
2 + EF2 + TNH(F2 +H)) O(F 2

2 + EF2 + TNH + (F2 +H)H)
MATA [15] OSN

↓
↑
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↑ ↑ ↑ ↑ ↑ ↑ - ↑

↓
O(NF 2

2 + EF2 + TNH(F2 +H)) O(F 2
2 + EF2 + TNH + (F2 +H)H)

TrustGuard [2] Generic
↓

↑
↓ ↓ ↓

↑ ↑
↓

↑
↓ ↓ ↓

↑
↓

O(TNF 2
2 + EF2) O(TNF 2

2 + T 2 +NF2 + F 2
2 )

Continuous-Time Medley [6] OSN
↓

↑
↓ ↓

↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑
↓

O(NF 2
3 + EF3) O(E + F 2

3 +NF3)

1. OSN: Online Social Network; SIoT: Social Internet of Things; MC: Mobile Crowdsourcing; P2P: Peer-to-Peer Network.
2. Dyn: Dynamicity; CA: Context-Awareness; CT: Conditional Transferability; Com: Composability; Asy: Asymmetry; NC: Node Characteristics; Het:
Heterogeneity; ATE: Attacks on Trust Evaluation; AG: Attacks on GNNs; Spa: Spatial; Tem: Temporal; Sca: Scalability; PP: Privacy Preservation; FG:
Fine-Grainedness.
3. N : Number of nodes; E: Number of edges/interaction types; P : Number of interaction types; T : Number of snapshots; H: The hidden state dimension
of GRU; F1/F2/F3/F4: Embedding dimensions when considering one/two/three/four features.
4.

↓
: supported/resisted; ↑: not supported/resisted; -: not mentioned/related.

understanding of node relationships. By stacking multiple
attention layers, GBTrust meets conditional transferability and
composability. It also considers varying levels of trust, thus
able to deliver a fine-grained evaluation result. However, its
reliance on node and edge features specific to P2P networks
hinders its generality. Heterogeneity is not considered.

Most models study homogeneous user-to-user trust net-
works, missing complex interactions in real-world heteroge-
neous networks. In response, Yu et al. [8] introduced KGTrust,
which captures different semantic meanings of user and object
nodes in SIoT. KGTrust consists of three layers. First, a
embedding layer generates user embeddings from comments
reflecting their preferences, as well as object embeddings from
external knowledge. Thus, this layer fully considers nodes’
inherent characteristics. Next, a heterogeneous convolutional
layer defines trustor and trustee roles to support asymmetry,
and applies a discriminative attention mechanism to handle
various node types and interactions, addressing heterogene-
ity. By stacking multiple heterogeneous convolutional layers,
KGTrust supports conditional transferability and composabil-
ity. Finally, a prediction layer predicts trust relationships
between any user pairs. However, KGTrust does not account
for diverse trust levels, failing to support fine-grainedness.

Additional Remarks: The above three models employ graph
attention mechanisms, enabling selective aggregation of trust
information from different nodes, which provides a more
realistic representation compared to graph convolution models.
However, their overhead (refer to Table I) increases accord-
ingly due to the need to compute node importance. Thus, how
to enhance their scalability remains challenging. Similar to
graph convolution models, these attention-based models fail
to satisfy two basic trust properties: dynamicity and context-
awareness, leaving a lot of room for improving evaluation
accuracy. In addition, they lack support on robustness, ex-
plainability, and privacy preservation, which require further
investigation to enhance their practical applicability.

3) Chain-Based Model: To explicitly consider transferabil-
ity and composability, Huo et al. [5] proposed TrustGNN in
OSNs. TrustGNN first introduces trust chains to define direc-
tional propagation patterns, modeling conditional transferabil-
ity and asymmetry. Then, an attention mechanism is adopted to
discriminately aggregate information across trust chains, sup-

porting composability. Additionally, TrustGNN provides spa-
tial explainability by visualizing the importance of each chain.
Experimental results show that TrustGNN can handle networks
with different levels of trust, thus satisfying fine-grainedness.
However, other criteria like dynamicity and context-awareness
are not discussed in this work. Its computational and storage
complexities are presented in Table I.

C. Review on Dynamic Models
1) Discrete-Time Models: Static models focus on specific

snapshots, failing to capture trust dynamicity. In response, Wen
et al. [10] proposed DTrust in OSNs by splitting a dynamic
graph into time-ordered snapshots. DTrust comprises three
units. A static feature aggregation unit captures spatial features
for users within each snapshot using a mechanism similar to
Guardian, thus some basic trust properties can be supported
as well. A dynamic feature unit takes a sequence of spatial
features derived from different snapshots as its input, and
learns the evolution of trust relationships via Gated Recurrent
Unit (GRUs). A prediction unit receives two user embeddings
containing both spatial and temporal features and then outputs
their current or future trust relationship. DTrust offers fine-
grained evaluation by evaluating trust with different levels.
However, it lacks support on robustness, explainability, and
scalability.

To enhance robustness, Jafarian et al. [15] proposed MATA,
an extension of the DTrust [10] architecture that incorporates
an attention layer and a reputation assessment module. Specif-
ically, the attention layer helps identify on-off attackers who
try to conceal their behavioral fluctuations over a long period
by assigning varying weights to different snapshots. The
reputation assessment module based on clustering can detect
suspicious nodes. However, some parameters are required to
be set in this module, which limits generality. MATA satisfies
the same criteria as DTrust while showing additional resilience
against bad/good-mouthing attacks and on-off attacks.

Wang et al. [2] proposed TrustGuard to simultaneously
address dynamicity, robustness, and explainability for the first
time. Unlike DTrust [10] and MATA [15], TrustGuard em-
ploys a position-aware attention mechanism to learn temporal
patterns across time-ordered snapshots, which is more efficient
than GRUs. Additionally, it designs a robust aggregator based
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TABLE II: Correctness of representative GNN-based trust evaluation models.

Datasets Metrics
Static Models Dynamic Models

Graph Convolution Graph Attention Discrete-Time Continuous-Time
Guardian [9] GATrust [7] TrustGuard [2] Medley [6]

Static Datasets

Advogato
MCC 0.595±0.006 0.599±0.001 0.601±0.004 -
AUC 0.892±0.003 0.891±0.002 0.896±0.003 -

F1-macro 0.697±0.005 0.700±0.002 0.699±0.005 -

PGP
MCC 0.739±0.002 0.733±0.007 0.729±0.004 -
AUC 0.887±0.005 0.890±0.004 0.894±0.011 -

F1-macro 0.649±0.035 0.666±0.007 0.682±0.038 -

Dynamic Datasets

Bitcoin-OTC
MCC 0.224±0.071 0.192±0.076 0.381±0.014 0.364±0.006
AUC 0.660±0.023 0.634±0.044 0.727±0.007 0.688±0.020

F1-macro 0.559±0.064 0.541±0.059 0.682±0.007 0.632±0.007

Bitcoin-Alpha
MCC 0.159±0.013 0.141±0.035 0.188±0.007 0.203±0.017

AUC 0.530±0.071 0.516±0.033 0.642±0.026 0.599±0.016
F1-macro 0.504±0.011 0.505±0.014 0.589±0.004 0.539±0.005

The best result is marked in bold; “-” indicates that the model is not applicable to the corresponding dataset.

on network homophily, propagating and aggregating trust
by considering user similarity to counter malicious attacks.
Beyond meeting the criteria satisfied by DTrust, TrustGuard
demonstrates resilience to typical trust-related attacks as well
as scalability to large-scale networks. To offer explainability,
it visualizes user similarities to identify the importance of
each neighbor and attention scores to illustrate the learned
temporal patterns, offering insights into spatial and temporal
dimensions.

Additional Remarks: DTrust [10] and TrustGuard [2] effec-
tively capture temporal patterns using GRUs and a position-
aware attention mechanism, respectively, while MATA [15]
integrates both techniques to deal with monotonic assumption
of GRUs. In comparison to the static models, the dynamic
models consider an additional time dimension, which allows
for accurate modeling of trust relationships by accounting
for evolving interactions and behaviors over time. Regarding
robustness, TrustGuard makes the first attempt to counter
bad/good-mouthing attacks and on-off attacks by designing
a robust aggregator. It also demonstrates that its spatial-
temporal architecture can naturally counter on-off attacks.
Differently, MATA introduces an attention layer to deal with
inconsistent behaviors across snapshots and a reputation as-
sessment module to identify suspicious nodes. However, there
is still a significant gap in developing robust GNN-based trust
evaluation models that can defend against various types of
attacks on trust evaluation, as well as attacks on GNN model
itself. Moreover, all these models do not consider context-
awareness, a basic nature of trust. They focus solely on
user-to-user interactions, overlooking heterogeneity and node
characteristics. Essential privacy is not protected during trust
evaluation, either. Refer to Table I, their computational and
storage complexities are higher than static models due to
temporal information modeling.

2) Continuous-Time Models: In cases of high event fre-
quency or short time intervals, discrete-time models may
miss precise temporal information. In response, Lin et al. [6]
proposed Medley, which uses continuous-time representations
in OSNs. Medley incorporates three types of embeddings:
user, time, and interaction embeddings. User embeddings are
generated based on users’ social ties. Functional time encoding

maps timestamps into high-dimensional vectors, fully leverag-
ing each timestamp. Interaction embeddings showing different
trust levels are modeled to support fine-grained evaluation. All
embeddings are propagated and aggregated through attention-
based layers, satisfying conditional transferability and compos-
ability while identifying the importance of interactions formed
over time. However, Medley does not explicitly model the
two distinct roles of a trust relationship, thus cannot fully
support asymmetry. It also struggles with high overhead when
interactions are frequently updated, making it unsuitable for
large-scale networks. Other criteria like context-awareness and
heterogeneity are not investigated in this work. Its computa-
tional and storage complexities are presented in Table I.

D. Experimental Analysis of Cutting-edge Evaluation Models

In this subsection, we quantitatively evaluate four represen-
tative GNN-based trust evaluation models: Guardian [9],
GATrust [7], TrustGuard [2], and Medley [6]. The evaluation
focuses on their correctness in predicting static or dynamic
trust relationships between nodes, referred to as an edge classi-

fication task. We utilize four datasets collected from different
scenarios. Advogato and PGP are static datasets [9] that come
from online social networks for open-source software de-
velopers and public certification networks, respectively. Both
datasets include four levels of trust. Bitcoin-OTC and Bitcoin-
Alpha are dynamic datasets [6] collected from an open market
where users can make transactions using Bitcoins. These
datasets have two levels of trust. For evaluation metrics, we
employ Matthews Correlation Coefficient (MCC), the Area
Under the ROC Curve (AUC), and F1-macro that are well-
suited for handling imbalanced datasets, as suggested in [2].
For implementation details, our experiments are conducted
on a machine equipped with an Intel(R) Core(TM) i7-12700K
CPU and an NVIDIA GeForce RTX 3060 GPU. The GNN
models are implemented using the Pytorch framework (ver-
sion 1.8.1 + cu111). In addition, for dynamic datasets, trust
relationships are chronologically split into 80% for training
and 20% for testing. For static datasets, the trust relationships
are randomly split in the same 80%-20% ratio. We report the
average results obtained from 5 runs for each experiment.
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As shown in Table II, we observe that Guardian, GATrust,
and TrusrGuard are comparable on static datasets, with Trust-
Guard slightly ahead. This can be attributed to the simplicity
of the static datasets, which limit the performance of dynamic
models. When it comes to dynamic datasets, we find that
dynamic models consistently outperform static ones. This
superiority is due to dynamic models’ ability to effectively
capture temporal dependencies and adapt to evolving trust re-
lationships over time. Additionally, Guardian exhibits slightly
better performance than GATrust, likely because GATrust’s
high complexity reduces its generalizability across different
datasets. While TrustGuard achieves the best overall perfor-
mance, it is worth noting that determining an appropriate
observation frequency (which affects the number of snapshots)
for discrete-time models is a challenging task. This issue
would somehow affect the practicality of these models.

V. KEY CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

Through the above serious review, we identify key chal-
lenges faced by current research and suggest future research
directions accordingly in this section.

A. Limited Support on Context-Awareness
None of the existing models support context-awareness,

leading to coarse-grained evaluation results. Since trust rela-
tionships vary across contexts, it is essential to incorporate
specific contextual information and identify context-aware
trust. However, the lack of sufficient contextual information
and fine-grained labels in existing datasets make investigating
context-aware trust evaluation particularly challenging. Fu-
ture research could explore heterogeneous networks enriched
with contextual information. For example, in networks like
Epinions and Ciao [8], both user nodes and item nodes
exist, and item categories can serve as contexts. In this case,
researchers could first make full use of item categories to
predict context-aware trust, and then link these predictions
with labeled overall trust, thus avoiding the reliance on fine-
grained labels. In addition, Large Language Models (LLMs),
with their extensive knowledge base and strong reasoning
abilities, show great potential to generate context-specific trust
labels on datasets and produce high-quality embeddings based
on limited contextual information.

B. Inadequate Consideration of Robustness
Model robustness against poisoning or evasion attacks is

rarely studied in the current literature, with only Trust-
Guard [2] and MATA [15] making efforts to defend against
attacks on trust evaluation. However, the vulnerabilities of
GNN itself deserve significant attention since adversarial
attacks are more disruptive than trust-related attacks. Some
defense strategies from the image domain could be borrowed
for enhancing model robustness. For instance, adversarial
training is effective against evasion attacks. Additionally,
graph preprocessing techniques based on Jaccard or cosine
similarities, as well as low-rank based defenses are useful

for filtering adversarial edges. Incorporating the properties
of clean graphs as constraints within the loss function can
also facilitate the training of a robust GNN model. Last but
not least, LLMs can capture the inherent features of nodes
using their textual attributes to generate node embeddings.
When integrated with these LLM-derived embeddings, GNNs
may become resilient to adversarial attacks since the rich
semantic information offered by LLM within the embeddings
strengthens their ability to distinguish between normal and
malicious node behaviors.

C. Limited Explainable Evaluation Results
Existing models make significant efforts for improving the

accuracy of trust evaluation but neglect the explainability of
evaluation results from a human perspective. This oversight
impacts user acceptance on these models. Future research
could incorporate explainability tools to address this issue.
For instance, visualizing the parameters learned by a GNN
model can help users understand how an evaluation result
is derived [2, 5]. Additionally, identifying small yet repre-
sentative subgraphs via specific explanation methods is also
beneficial. Fig. 4(a) illustrates an example of explainable
evaluation results. By using a GNN explainer, users can clearly
understand how each evaluation result is derived and identify
the interactions that have the greatest influence on the final re-
sult. For example, v1 is deemed trustworthy because it receives
two trusted relationships with high weights, while a distrusted
relationship is assigned a low weight. This visualization not
only aids users in assessing the rationality of the evaluation
results but also enhances user trust in the GNN model.

D. Lack of Privacy Preservation
None of the existing models support privacy preservation,

which is highly expected by users and required by govern-
mental policies. Federated Learning (FL) is a distributed ML
framework that offers a degree of privacy preservation. Apply-
ing such an FL framework with differential privacy techniques
is a promising approach to achieve privacy-preserving trust
evaluation. Considering a CPS, as shown in Fig. 4(b), where
devices serve as FL clients, while a base station acts as an FL
server. Each device constructs an interaction subgraph with
its connected peers to evaluate their trustworthiness. However,
due to resource constraints, devices are unable to collect a
complete graph, resulting in low accuracy of local models.
Additionally, privacy regulations prohibit the direct upload of
raw data to the server. In this context, although FL-enabled
GNNs present an effective solution by facilitating collaborative
learning without compromising privacy, new challenges arise
when FL meets GNNs, e.g., how to deal with missing links
across local subgraphs, which requires special investigation.

E. Inefficiency of Dynamic Models
Existing models suffer from scalability issues due to high

complexity to capture the dynamic nature of trust. Continuous-
time models consider all timestamps, leading to high costs,
while discrete-time models reduce these costs by simplifying
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Fig. 4: Examples of explainable and privacy-preserving GNN-based trust evaluation.

dynamic graph representations, yet still face challenges when
being applied to large-scale graphs. From a model perspective,
it is promising to design simple architectures or consider non-
learnable time encoding techniques. From a data perspective,
neighbor sampling can be adopted to select limited yet impor-
tant neighbors for information propagation and aggregation.
Improvements in both aspects show great potential to enhance
the scalability of existing models.

F. Limited Application Scenarios
Research on GNN-based trust evaluation is still in its

infancy, primarily focusing on social networks. However, other
promising application scenarios [3], such as 6G heterogeneous
networks, computing power networks, and industrial CPS,
require further investigation. The reasons are as follows: (i)
Real-world networks can be naturally modeled as graphs
for effective GNN analysis. (ii) There is a pressing need
to establish trust within these networks. For example, it is
challenging to ensure that all nodes across different network
domains in 6G networks are trustworthy. In such cases, trust
evaluation becomes crucial for understanding the dynamically
changed trust status of the network, facilitating trustworthy
networking, as outlined by ITU Recommendation Y.3053.

VI. CONCLUSION

In this paper, we review existing trust evaluation models
that employ GNNs. We first propose both qualitative and
quantitative criteria to evaluate trust evaluation performance.
Then, we provided a technical taxonomy of existing mod-
els, and employed our proposed criteria to conduct an in-
depth review and analysis of existing GNN models for trust
evaluation following this taxonomy. Moreover, we compared
the effectiveness and validity of some cutting-edge models
with regard to trust using commonly used datasets. As a
result, we identified several key challenges and proposed
future directions that advance the research on GNN-based trust
evaluation.
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