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Abstract: Long-running software may operate on hardware platforms with limited energy resources
such as batteries or photovoltaic, or on high-performance platforms that consume a large amount
of energy. Since such systems may be subject to hardware failures, checkpointing is often used to
assure the reliability of the application. Since checkpointing introduces additional computation time
and energy consumption, we study how checkpoint intervals need to be selected so as to minimize a
cost function that includes the execution time and the energy. Expressions for both the program’s
energy consumption and execution time are derived as a function of the failure probability per
instruction. A first principle based analysis yields the checkpoint interval that minimizes a linear
combination of the average energy consumption and execution time of the program, in terms of the
classical “Lambert function”. The sensitivity of the checkpoint to the importance attributed to energy
consumption is also derived. The results are illustrated with numerical examples regarding programs
of various lengths and showing the relation between the checkpoint interval that minimizes energy
consumption and execution time, and the one that minimizes a weighted sum of the two. In addition,
our results are applied to a popular software benchmark, and posted on a publicly accessible web
site, together with the optimization software that we have developed.

Keywords: optimum energy savings; minimum execution time; checkpoint interval; analytical
models

1. Introduction

Long-running programs include database systems, operating systems, and platforms
that support sensor systems. Such software needs to be very reliable, but should also
be efficient in execution time and energy consumption. Thus its reliability [1] is often
assured via checkpoints, to avoid that each failure leads to excessive overhead in execution
time [2–4] and energy consumption [5].

Indeed, among the mechanisms that restore or preserve system consistency after
failures [6], Checkpointing and Recovery (CR) is used widely to periodically save an up-to-
date copy of system or program state that is used to restart execution if a failure occurs.
CR can also be found in high performance systems [7–10], operating systems including
Linux [11–13], databases [14], and distributed systems [15–18].

Thus checkpoint intervals have been widely studied to maximize system availabil-
ity and minimize program execution time for transaction-oriented systems [19–21], and
imbedded multiple level checkpoints introduced in [22,23] were recently studied in [24].
CR [6,25] includes “Application-level Checkpoint and Restart” (ALCR) [26,27], that uses
smaller memory space but requires significant programming skills to insert checkpoints in
long-running loops [28,29]. Since longer inter-checkpoint intervals increase the required
time and energy of system restart, and short intervals increase them due to frequent check-
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points, the checkpoint interval should be chosen to minimizeboth energy consumption and
execution time [30,31].

In recent years the importance of energy savings in information technology and
software has been often emphasized [32–35], and research has addressed the efficient
allocation of energy in computer systems [36–38] including the use of of server or network
node vacations to reduce energy consumption [39], techniques to select Cloud servers
based on energy efficiency [40], and the use of renewable energy sources [41–44]. There
has been less work on more detailed techniques such as checkpoints to reduce energy
consumption [45,46], or on checkpoint optimization in modern software using ALCR
[47,48]. In addition, commonly used tools such as ALCR do not offer assistance in selecting
checkpoint intervals to optimize energy consumption or execution time, and a software
tool was proposed recently to address this issue [49].

Thus in this paper we focus on analyzing the checkpoint intervals in a unified manner
to effect savings in a weighted combination of execution time and energy, since energy
consumption is of importance both in autonomously operating platforms and for software
running in large scale Cloud data centers [50]. In the sequel, starting from first principles,
we develop a mathematical model to estimate the average execution time as well as the
energy consumption of a program with long loops that operates in the presence of failures,
without and with ALCR. This allows us to compute the checkpoint interval that minimizes
the program’s energy consumption and average execution time, and its value that can
minimize a cost function that is a weighted sum of both elements, expressed via the
Lambert Function, with numerical examples that illustrate the results. In addiion, we also
apply these results to a well known software benchmark.

The rest of the paper is structured as follows. In Section 2, the mathematical model
that estimates the average execution time and energy consumption of a software program
that operates in the presence of failures with and without checkpoints is presented. In
Section 3, based on this mathematical model, the closed-form expression of the optimum
checkpoint interval is derived. In Section 4, we illustrate our results through a set of
numerical examples. In addition, Section 5 is devoted to show how our model can be
used to select checkpoints for the popular Rodinia Benchmark of real-world open-source
software written in C and C++ programming languages, which is widely used for software
performance evaluation and energy optimization, and in particular the streamcluster (https:
//github.com/yuhc/gpu-rodinia/tree/master/opencl/streamcluster) program. Finally,
Section 6 concludes the paper and discusses directions for future work.

2. A Single Loop Program with Checkpoints

Consider a program P that executes yn instructions between its (n− 1)-th and n-th
checkpoint, without counting all possible failures and failure recoveries. Now consider
the instant tn > 0 when the program creates its n-th checkpoint, and let Yn denote the total
number of instructions that the program has executed by time tn since it started, where Yn
does not include all the repeated instructions that were executed due to checkpoints and
failure recovery, and obviously: Yn = ∑n

i=1 yi .
Let Bc(Yn) be the computation time needed to create the n-th checkpoint. This quantity

will generally depend on the total memory space occupied by the program, but in certain
cases it may depend on Yn, since the program may generate new data as it is executing.
Hence we will write Bc(Yn) = Bc

0 + Bc
1Yn where Bc

0 > 0 and Bc
1 ≥ 0 are constants for the

given program.
On the other hand, suppose a failure occurs after the program has successfully exe-

cuted y instructions after the n-th checkpoint, i.e., after the program has executed Yn + y
instructions. If bc(Yn, y) is the computation time needed to restart the program from the
most recent checkpoint, when the program has successfully executed y ≤ Yn+1 − Yn in-
structions after the most recent checkpoint but before the (n + 1) checkpoint, then we
will have:

bc(Yn, y) = bc
0 + bc

1y, where bc
0 > 0, and b1 ≥ 0 are constants. (1)

https://github.com/yuhc/gpu-rodinia/tree/master/opencl/streamcluster
https://github.com/yuhc/gpu-rodinia/tree/master/opencl/streamcluster
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Therefore the time duration bc(Yn, y) depends on the number y of instructions that
have been executed by the program since the last checkpoint was established. In summary,
we are assuming that:

• The time Bc(Yn) needed to establish the n-th checkpoint depends on the “age of the
program” or the total number of instructions Yn it has executed since the beginning,
i.e., Bc(Yn) = Bc

0 + Bc
1(Yn),

• The time bc(Yn, y) needed to recover from a failure after the n-th checkpoint, includ-
ing the time related to re-loading system state after the failure, only depends on
y ≤ Yn+1 − Yn, the “computation time undertaken by the program since the last
checkpoint”, i.e., bc(Yn, y) ≡ bc(y) = bc

0 + bc
1y.

Similarly, we denote the energy consumption for creating the n-th checkpoint to be
Be(Yn), and be(y) is the energy used to recover from a failure after a failure that occurs
when the total number of instructions executed is Yn + y ≤ Yn+1. Also, we will have
Be(Yn) = Be

0 + Be
1Yn, and be(y) = be

0 + be
1y with Be

0 > 0, Be
1 ≥ 0 and be

0 > 0, be
1 ≥ 0.

Let α, β > 0 be positive constants that represent the relative costs of computation time
and energy consumption. We can then define the parameters:

B0 = αBc
0 + βBe

0,

B1(Yn) = αBc
1(Yn) + βBe

1(Yn),

b0 = αbc
0 + βbe

0,

b1 = αbc
1 + βbe

1,

and the total cost of an instruction can be viewed as the weighted sum of its executon time
and of its energy consumption c = αKc + βKe.

2.1. Fixed Checkpoint Intervals

Earlier work has shown that “age dependent” checkpoints [51] can reduce the overall
cost of checkpointing and failure recovery, when (for instance) the failure rate of a system
increases with time. However, most practical checkpointing schemes use a simpler ap-
proach where checkpoints are carried out periodically each time the program has executed
successfully a predetermined fixed number of instructions yn = y. Thus, in the sequel we
will make this assumption so that checkpoints are placed after Y1 = y, Y2 = 2y, .. Yn = ny,
etc. instructions have been successfully executed, and we will proceed to compute the
optimum value of y, assuming that n is fixed in advance.

When the program ends after Y = Ny instructions are executed, a further (N + 1)-th
checkpoint is not needed, while the first checkpoint is obviously installed before the first
instruction is executed.

We can then formulate our problem as that of a program that executes a total fixed
number of instructions Y, where we want to choose the constant value y of the number
of instructions between checkpoints, or equivalently we can choose N, the number of
checkpoints so that Y = Ny so that the total overhead in additional work and energy
consumption due to failures and due to checkpoints is minimized.

For a given y, let us compute Kc(y), which is the corresponding total expected execu-
tion time including all restarts due to failures, starting from the most recent checkpoint.
When the average execution time per instruction is c, and the failure probability per in-
struction is (1− a), the total average time elapsed time for the execution of y instructions
is:

Kc(y) = cyay + (b0 + Kc(y))(1− ay),

+(Kc + bc
1)

y

∑
x=1

xax−1(1− a), (2)
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because with probability ay a failure does not occur during the y instructions, leading to
an execution time of Kcy time units, while with probability (1− a)y at least one failure
does occur among the y instructions, and the first of those requires a program re-start time
of bc

0, to which we should add Kc(y) representing the effect of all future failures after the
program has been re-initialised from the checkpoint.

Also, we have to include the execution time plus the amount of additional work
needed per executed instruction, until the failure occurs—hence the term (Kc + bc

1) –
multiplied by x and the probability that the failure occurs at instruction x which is ax−1.a,
summed over x running from 1 to y. Since

y

∑
x=0

ax =
1− ay+1

1− a
,

and
d
da

1− ay+1

1− a
=

1− yay(1− a)− ay

(1− a)2 ,

we obtain:

Kc(y) = bc
0[a
−y − 1] +

Kc + bc
1

1− a
[a−y − 1]− bc

1y. (3)

the total expected energy consumption Ke(y) for a number of instructions y after the most
recent checkpoint, we similarly obtain the quantity:

Ke(y) = be
0[a
−y − 1] +

Ke + be
1

1− a
[a−y − 1]− be

1y, (4)

where Ke denotes the average energy consumption per instruction, so that

C(y) = αKc(y) + βKe(y),

= b0[a−y − 1] +
c + b1

1− a
[a−y − 1]− b1y. (5)

Interestingly enough, we can show using l’Hôpital’s Rule, for all y ≥ 1, that:

lim
a→1

C(y) = cy, (6)

as would be expected.
Treating y as if it were a real number, we can compute the derivative of C(y). We first

note that for a differentiable function f (y) of the real variable y, we can write:

d f
dy

= f .
d ln f

dy
, hence

d
dy

a−y = −a−y. ln a, (7)

and therefore
dC(y)

dy
= − ln a.[

b0

ay +
c + b1

ay(1− a)
]− b1. (8)

Because a ≤ 1, the quantity − ln a ≥ 0, and since y is large, 1
ay is very large and dC(y)

dy > 0.

3. Minimizing Computation Time and Energy

When we include both the time and energy needed to create each checkpoint, and
assuming a fixed number of instructions y executed between successive checkpoints, we
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can obtain the total cost of the program up to and including the last instruction executed at
Y = yN as:

GN(y) = NB0 +
N

∑
i=1

iyB1 + NC(y), (9)

= NB0 + C(y) +
N(N + 1)

2
yB1. (10)

The optimum checkpoint interval y∗ is then the value of y that minimizes κN(y), the
overall cost per unit work that is accomplished, i.e., GN(y) divided by Y = Ny which is
the total number of useful instructions executed over this time:

κN(y) ≡
GN(y)

Ny

=
B0 + C(y)

y
+ (

Y
y
+ 1)

B1

2

=
B0 +

B1Y
2 + C(y)
y

+
B1

2
. (11)

Therefore, to seek the optimum value of y, we compute the following derivative and
set it to zero:

dκN
dy

=
y dC(y)

dy − (B0 +
B1Y

2 + C(y))

y2 , (12)

so that the optimum value of y is:

y∗ =
B0 +

B1Y
2 + C(y∗)

dC(y)
dy |y=y∗

=

B0 +
B1Y

2 + b0[a−y∗ − 1] + c+b1
1−a [a

−y∗ − 1]− b1y∗

− ln a.[ b0
ay∗ +

c+b1
ay∗ (1−a)

]− b1
,

or − y∗lna + 1
ay∗ =

B0 +
B1Y

2

b0 +
c+b1
1−a

− 1. (13)

Defining B = B0 +
B1Y

2 and

A = b0 +
c + b1

1− a
, (14)

we have:

−y∗ ln a + 1
ay∗ =

B0 +
B1Y

2

b0 +
c+b1
1−a

− 1,

or ln(a−y∗ .e−1)[e−1a−y∗ ] =

−(y∗ ln a + 1)e−(y
∗ ln a+1) =

B− A
e.A

, (15)

To verify that y∗ is the minimum value, we compute:

d2κN(y)
dy2 =

y3C′′(y)− 2y(yC′(y)− B− C(y))
y4 , (16)
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where C′(y), C′′(y) denote the first and second derivatives of C(y) with respect to y, and
B = B0 + B1Y. Since at y∗ we have y∗C′(y∗) = B + C(y∗), we can write:

d2κN(y)
dy2 |y=y∗ =

C′′(y)
y
|y=y∗ , (17)

and we need to examine the sign of C′′(y∗). Starting from (8) we have:

C′′(y) = a−y(ln a)2[b0 +
c + b1

1− a
]− a−y ln a

c + b1

(1− a)2 , (18)

which is positive, so that y∗ is indeed the value of y at the minimum.

3.1. The Optimum Checkpoint Using the Lambert Function

Let us first recall the definition of the Lambert Function W(z) [52–55]. Consider any
two numbers z, w, which have the following relation:

z = w exp w;⇐⇒ w = W(z). (19)

Thus if we can write z = wew, then w = W(z), and similarly if w = W(z), then
z = wew.

Applying (19) to Equation (15), we can write the expression for y∗ as:

y∗ = − 1
ln a

[W(
B− A

e.A
) + 1], (20)

which provides an explicit solution for the value of the optimum checkpoint interval
y∗. Clearly, if we set α = 1 and β = 0, we obtain the optimum checkpoint that simply
minimizes the overall execution time, without consideration for the energy consumption.

Also, if in the system under consideration the creation of a checkpoint does not depend
on the amount of successful computation that the program has accomplished until the time
of the checkpoint, then we simply set Bc

1 = Be
1 = 0 in the expression for B, so that B = B0

which is the case that is usually discussed in the literature.

3.2. Sensitivity of the Optimum to Energy Consumption and Computation Time

An important question concerns how y∗ varies with changes in the relative importance
of the energy expenditure with respect to computation time. To address this issue as a
single parameter problem, we will set α = 1, and consider the derivative of y∗ with respect
to β. Noting that we can now write B = Bc + βBe and A = Ac + βAe, we have:

∂y∗

∂β
= − 1

ln a
W ′(

B− A
e.A

).
Be Ac − AeBc

(eA)2 ,

= − 1
ln a

W( B−A
e.A )(Be Ac − AeBc)

B−A
e.A (1 + W( B−A

e.A ))((eA)2)
,

= − (y∗ ln a + 1)(Be Ac − AeBc)

y∗(ln a)2(B− A)eA
, (21)

where we have used the identity:

dW(x)
dx

=
W(x)

x(1 + W(x))
, (22)

when x 6= 0 and x 6= − 1
e . These two conditions will be satisfied because it is unlikely in

practice that the system parameters be such that B = A, furthermore it is impossible that
B− A = −A because B > 0.
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Thus we can use the expression (21) to determine how fast y∗ will vary as a function
of β. In particular we have the following very interesting result.

Result: When Be Ac = AeBc, then y∗ does not depend on the relative weight of the execution
time and energy consumption, so that a single value of y∗ will minimize the overall cost for
α = 1 and any value of β that represents the relative importance of energy consumption to
computation time.

4. A Program with a Single Long Loop

In this section, we will apply the previous results to a program with a single long loop
of length L instructions which is executed some number, say T times, so that Y = LT. For
this program, we may be constrained to place checkpoints either at the start of a loop so
that y = m.L with one checkpoint for each m > 1 loops, or n checkpoints may be placed
within the loop with L = ny where n > 1, or we set n = 1. We first apply the previous
results to compute y∗:

y∗ = − 1
ln a

[W(
B− A

e.A
) + 1], (23)

where:
B = B0 + B1L.T, A = b0 +

c + b1

1− a
, (24)

so that

y∗ = − 1
ln a

[W(
(1− a)(B0 + B1L.T)
e[b0(1− a) + c + b1]

− 1
e
) + 1]. (25)

Let us denote by I(x) the integer that is closest to the real number x. Then we compute
r = L

y∗ , and:

• If r ≥ 1 we set n = I(r),
• If r < 1, we set n = I( 1

r ).

To illustrate these results, numerical examples are provided in order to show the effect
of the checkpoint interval n (expressed in terms of the number of loop repetitions between
checkpoints) on the expected execution time and the total energy consumption of a software
application that operates in the presence of failures. In order to differentiate the effect of
computation time and energy consumption, we use no to represent the checkpoint interval
that minimizes the total computation time, while n+ refers to the optimum checkpoint
interval that minimizes the total energy consumption. Note that in the preceding analysis,
no can be obtained by setting α = 1, β = 0, while n+ is obtained by setting α = 0, β = 1.

These examples consider the case of a program with a single loop in which checkpoints
are established at the beginning (or at the end) of the loop. We consider a small, medium,
large, and very large program, comprised of Y = 104, 105, 106, 107 instructions, respec-
tively. The expected execution time of the same program with and without the adoption of
the ALCR mechanism is calculated and the corresponding optimization problem is shown
numerically. The parameter values that we use are:

Be
0 = 500, Be

1 = 0, Bc
0 = 105, Bc

1 = 0, Kc = 1

Ke = 10−5, be
0 = 100, be

1 = 10, bc
0 = 100, bc

1 = 10

g = 5× 10−6, L = 100.

In Figure 1, the example of a small software program (i.e., Y = 104) is considered.
Figure 1a compares the expected execution time of the application with and without the
ALCR mechanism for different values of n, while Figure 1b shows the expected Gain in
terms of expected execution time for different values of n. The values that correspond to
the optimum checkpoint interval no are marked within a rectangle.

Figure 1 illustrates the fact that the optimum checkpoint interval no minimizes the
overall execution time of the application and maximizes the overall expected Gain. From
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Figure 1 it is clear that the ALCR mechanism will not reduce the expected execution time
of a given software application unless the checkpoint interval is optimally selected. Indeed,
for some poorly chosen values of n, the expected execution time of the application with
checkpointing is higher than the expected execution time of the same application without
checkpoints. For instance in this example, choosing a very small checkpoint interval (i.e.,
below 5) will actually lead to an increase in the expected execution time of the software
program, compared to the execution time of the same program when the checkpointing
mechanism is not adopted. This suggests that frequent checkpointing which enhances the
reliability of the software program, may result in increases of execution time due to the
cost of checkpointing itself.

Similar observations can be made for software with longer loops in Figures 2–4. This
emphasizes the importance of setting n to be close or at no, when there is a need for
minimizing the execution time of the program.

The examples of Figures 1–4 show that a significant reduction in the execution time of
a software application can be achieved by the ALCR mechanism, if the checkpoint interval
is selected to be at, or close to, the optimum no. In these examples, the Gain ranges from
64% to 80%. However, suboptimal values of the checkpoint interval will lead to a smaller
Gain or even to an average execution time, which is larger than when ALCR is not used.
Indeed, the checkpoint interval should not be selected arbitrarily and must be tuned to a
value at, or close to, the optimum no.

(a) (b)
Figure 1. The case of a small software program (i.e., Y = 104): (a) Expected execution time comparison (logarithmic axes)
(b) Expected execution time gain.

Still, there is a relationship between calculations for no and n+. However, we must
have in mind that the optimum checkpoint interval will be different regarding energy
consumption and execution time. Figure 5 shows how they correspond to each other. More
specifically, Figure 5a shows how execution time changes when we want to use optimal
checkpoint interval calculated for energy consumption. Similarly, Figure 5b shows how
energy consumption changes when we want to use the checkpoint interval that optimizes
execution time.

The numerical example presented in Figure 5 shows that the checkpoint interval that
minimizes the energy consumption does not necessarily minimize the execution time as
well and vice versa. In particular, in the given example, setting the value of n to no will
minimize the expected execution time of the software program, but will lead to around
half the maximum achievable energy savings. Similarly, setting the value of n to n+ will
minimize the expected energy consumption of the software program, but will lead to lower
than the maximum achievable savings in execution time. Hence, the type of the application
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should be also taken into account in order to decide, whether to prioritize the execution
time or the energy consumption of a given program. It should be noted that the model is
highly configurable, which means that the user can define the relative importance of the
quality attributes of execution time and energy consumption for a given software program,
by properly setting the α and β parameters of the model (see Section 3). This enables the
calculation of the checkpoint interval that strikes a desired balance between these two
quality attributes.

(a) (b)
Figure 2. The case of a software program of medium size (i.e., Y = 105): (a) Expected execution time comparison (logarithmic
axes) (b) Expected execution time gain.

(a) (b)
Figure 3. The case of a large software program (i.e., Y = 106): (a) Expected execution time comparison (logarithmic axes) (b)
Expected execution time gain.
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(a) (b)
Figure 4. The case of a very large software program (i.e., Y = 107): (a) Expected execution time comparison (logarithmic
axes) (b) Expected execution time gain.

(a) (b)
Figure 5. The case of a large software program (i.e., M = 106): (a) Expected execution time with highlighted n+. (b)
Expected energy consumption with highlighted no.

Impact of g and B on the Optimum Checkpoint Interval

The optimum checkpoint interval no is expected to be influenced both by the probabil-
ity of failure g = 1− a, and by the cost of checkpointing Bc = Bc

0. In Figure 6, the optimum
checkpoint interval no is plotted against the probability of failure g, for three different cases
of checkpointing cost Bc. Four different examples are provided, corresponding to a sample
software program of small, medium, large, and very large size. In fact, the same cases of
programs that were investigated in Section 4 were considered in this section.

From the different graphs in Figures 6 and 7, we notice that the same behavior is
observed regarding the impact that the values of Bc and g have on the optimum checkpoint
interval, regardless of program size. Indeed for a given checkpointing cost Bc, the higher
the probability of failure g, the lower the optimum checkpoint interval no. This means that
for a given checkpointing cost, the higher the probability of failure the more frequently the
checkpoints should be generated. This is reasonable since the more frequent the failures
are the more frequent the checkpointing should be, in order to reduce the cost incurred by
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the failure-related re-executions. Conversely, for a specific probability of failure g, a higher
cost of a single checkpoint Bc leads to a larger optimum checkpoint interval no. This is also
reasonable, since the higher the checkpointing cost (given that the frequency of failures
is constant) the less frequent the checkpointing, since frequent checkpointing may incur
checkpoint-related costs.

These observations are highly intuitive since frequent checkpointing should be ap-
plied when the probability of failure is high, while checkpoints should be generated less
frequently when the checkpointing cost is high. The same observations hold for the case of
the optimum checkpoint interval n+ that minimizes the total expected energy consumption
of the program.

(a) (b)
Figure 6. The optimum checkpoint interval no against the probability of failure g for different cases of checkpointing cost
Bc, for a program of small (a) size with Y = 104, and a medium sized program in (b) with Y = 105.

(a) (b)
Figure 7. The optimum checkpoint interval no against the probability of failure g for different cases of checkpointing cost
Bc, for a large program (a) with Y = 106, and a very large program (b) with Y = 107.

5. Demonstration through a Real-World Example

In Section 4, we illustrated the effect of the checkpoint interval n (i.e., the number of
loop repetitions between consecutive checkpoints) on the expected execution time and
energy consumption of a software program that operates in a failure-prone environment
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through a set of numerical examples. The results of the simulation led us to the observation
that the checkpoint interval should be chosen to be at (or close to) its optimum value
(computed by our mathematical model) in order to achieve significant gains with respect
to execution time or energy consumption and to avoid potential costs that may be caused
by assigning arbitrary values to n.

To enhance the completeness of the present work, we also illustrate the effect of the
checkpoint interval selection on the computation time and energy consumption of a real-
world software program. More specifically, instead of being based on simulated values, we
selected a real-world open-source software program with a configurable computational
loop and we determined the required model parameters through actual measurements.
Then we used our model in order to compute the optimum checkpoint intervals that
optimize the execution time and energy consumption of the selected program for different
cases of program size (in fact, loop length). We focused on the execution time and energy
savings that could be achieved through the selection of the checkpointing interval using
the proposed model.

For the purposes of the present experiment, we used the Rodinia Benchmark
(https://github.com/yuhc/gpu-rodinia) [56] as the basis of our analysis. The Rodinia
Benchmark is a popular benchmark of real-world open-source software programs written
in C and C++ programming languages, which is widely used for benchmarking techniques
and mechanisms for software performance and energy optimization. From the different
programs that Rodinia contains, we used the streamcluster (https://github.com/yuhc/gpu-
rodinia/tree/master/opencl/streamcluster) program as the basis of our example. The
reasoning behind the selection of this program is that it contains a computational loop that
is also highly configurable, making it suitable for the purposes of our analysis. In fact, by
providing the correct input, the loop can be as lengthy as we wish, allowing us to take
different cases of loop length.

To compute the actual parameters that are necessary for the execution of our mathe-
matical model, the Energy Toolbox of the SDK4ED Project was utilized [57,58]. The Energy
Toolbox provides measurements of the execution time and energy consumption of a software
program at the loop-level of granularity, being mainly based on popular profiling tools like
Linux Perf (https://perf.wiki.kernel.org/) and Valgrind (http://www.valgrind.org/) , as
well as on static estimations [57,59]. The provision of loop-level performance and energy
measurements made it highly suitable for our case, which actually constitutes the main
reason for its selection. After executing the Energy Toolbox for the selected software program
the following parameters were determined (It should be noted that all the measurements
were made on an ARM Cortex A57 (Nvidia Jetson TX1) processor.):

Be
0 = 0.0059, Be

1 = 0, Bc
0 = 0.00347, Bc

1 = 0, Kc = 0.097× 10−7,

Ke = 0.03345× 10−9, be
0 = 0.752× 10−6, be

1 = 6.51× 10−9,

bc
0 = 0.031× 10−6, bc

1 = 0.45× 10−9, g = 5× 10−6, L = 4280.

As already mentioned, since the benchmark is highly configurable, we considered
three cases of loop length (in fact, of program size). In particular, we considered the case
of a small, medium, and large loop comprising Y = 5× 105, Y = 5× 106, and Y = 107

instructions respectively. It should be noted that this characterization is based exclusively
on the relative size of the loops that the program contains and it is used to better facilitate
the description of the present experiment.

In Figure 8, the example of the program with the small loop is illustrated (i.e.,
Y = 5× 105). Figure 8a compares the expected execution time of the software program
with and without checkpointing. Similarly, Figure 8b compares the expected energy con-
sumption of the selected software program with and without the adoption of the ALCR
mechanism. The checkpoint interval that minimizes the expected execution time (no) and
the checkpoint interval that minimizes the expected energy consumption (n+) are marked
within a rectangle in Figure 8a,b respectively.

https://github.com/yuhc/gpu-rodinia
https://github.com/yuhc/gpu-rodinia/tree/master/opencl/streamcluster
https://github.com/yuhc/gpu-rodinia/tree/master/opencl/streamcluster
https://perf.wiki.kernel.org/
http://www.valgrind.org/
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Figure 8 shows that important savings in both the expected execution time and energy
consumption are achieved for software program, if the checkpoint interval is selected to be
at (or close to) the values of no or n+ respectively computed by the mathematical model.
More specifically, if n is selected to be equal to no, a 74.8% gain in execution time, and a
gain of 67.3% in energy consumption is obtained when n is chosen equal to n+. It is very
clear that selecting arbitrary values for the checkpoint interval should be avoided, as this
may lead to excessive increase in the execution time and energy consumption: i.e. no gain
but even additional costs.

(a) (b)
Figure 8. The case of a software program with a relatively small loop (i.e., Y = 5× 105): (a) Expected execution time
comparison (logarithmic axes) (b) Expected energy consumption (logarithmic axes).

As can be seen by the given example, if n is set to be less than 3 in Figure 8a, the
expected execution time of the program will be higher than its expected execution time
when checkpointing is not adopted. Similarly, if n is set to a value lower than 8 in Figure 8b,
the expected energy consumption of the program will be higher than the expected energy
consumption of the same program when checkpointing is not adopted. This indicates that
frequent checkpointing may lead to the introduction of additional costs with respect to
execution time and energy consumption. In addition to this, in both cases, if n is set to a
value different (lower or higher) than the optimum values no and n+ that are computed
by our model, lower than the maximum achievable gains in terms of execution time and
energy consumption are achieved, leading to omission of important savings. Hence, this
suggests that the arbitrary selection of the checkpoint interval should be avoided, as it may
lead to omission of important savings or even introduction of additional costs, and, in turn,
it verifies that there is a need for a mechanism (model) for recommending the optimum
checkpoint interval.

Similar observations can be made for longer loops in programs as can be seen by
Figures 9 and 10. As for the previous case, these examples show that important savings
in terms of execution time and energy consumption can be achieved, provided that the
checkpoint interval is properly set. Here the maximum execution time savings are 73.12%
and 92.21%, whereas the maximum energy savings are 77% and 94.6%, for both medium
leng and long loops, respectively. These examples also show that a poorly chosen value for
the checkpoint interval may lead to the introduction of additional overhead with respect
to the execution time and energy consumption of the software program, highlighting
the importance of the choice of an optimum checkpoint interval. These results for a real
program example also agree with the “theoretical” conclusions drawn from the numerical
examples of Section 4.
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Although in our examples it appears that the optimum values for computation time
and energy, namely no and n+, are relatively close to each other, this will not be generally the
case, and depending on various parameters these values can differ significantly. Hence, the
end user can decide whether execution time or energy consumption should be prioritized
by using the parameters α and β. As mentioned in Section 3, by carefully setting these
parameters, the model can be used in order to compute the optimum checkpoint interval
that optimizes the execution time (α = 1 and β = 0), energy consumption (α = 0 and
β = 1), or a weighted combination of those two requirements (α 6= 0 and β 6= 0). Hence,
the mathematical model presented in this paper can be used in practice to satisfy different
user needs with respect to energy consumption and execution time of software programs
with loops.

(a) (b)
Figure 9. The case of a software program with a relatively medium loop (i.e., Y = 5× 106): (a) Expected execution time
comparison (logarithmic axes) (b) Expected energy consumption (logarithmic axes).

(a) (b)
Figure 10. The case of a software program with a relatively large loop (i.e., Y = 107): (a) Expected execution time comparison
(logarithmic axes) (b) Expected energy consumption (logarithmic axes).
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6. Conclusions

Checkpoints are widely used to allow a system to recover from failures without
having to restart a program’s execution from scratch every time a failure occurs. However,
checkpointing may add costs in additional time and energy, even when no failures occur.
Thus, we have analyzed the choice of optimum checkpoint intervals in a unified manner
from the perspective of energy consumption and execution time. Starting from first
principles we have derived the optimum checkpoint for programs with a long running outer
loop. Explicit analytic results have been derived and illustrated with numerical examples.
The model was also demonstrated using a real-world software program retrieved from a
popular benchmark.

More specifically, in this paper, we have focused on the importance of energy con-
sumption on the appropriate choice of checkpoint intervals for long-running programs that
require highly reliable operations. To this effect, we have developed a mathematical model
that details the manner in which program execution time and energy consumption interact
in a system that is subject to the establishment of regularly spaced checkpoint intervals.

The analysis has been used to determine the optimum number of checkpoints that
either minimizes total average energy consumption, or total average execution time, or
a linear combination of both. The solution to this optimization problem has been shown
to relate directly to an expression that includes the classical Lambert function. The sensi-
tivity of the optimum checkpoint interval to variations in all systems and checkpointing
parameters has also been computed analytically.

The results were then used to derive the optimum checkpointing interval for a program
with a long loop, so that checkpoints are installed either within each loop, or at the
beginning of some of the loops. Several numerical examples were presented to illustrate
the manner in which this approach could be used in a practical setting, for instance, to
guide the choices that need to be made with application-level checkpointing and recovery
(ALCR). A real-world example using an actual software program retrieved from the Rodinia
Benchmark was also presented.

Both the numerical examples and the example that was based on the real-world soft-
ware program led to some interesting observations. Firstly, in order to achieve important
savings (i.e., gains) in terms of execution time and energy consumption, the checkpoint
interval should be chosen to be at (or, at least, close to) its optimum value, as reported
by our mathematical model. In addition to this, the arbitrary selection of the checkpoint
interval should be avoided, as it may lead to lower than the maximum achievable gains
in terms of execution time and energy consumption or even to the introduction of ad-
ditional overheads. This further supports the need for a mechanism (i.e., a model) able
to compute the optimum checkpoint interval. Finally, the results of these examples also
highlighted the ability of the proposed model to be used in practice for satisfying different
user and application needs with respect to execution time and energy consumption through
properly setting its parameters. In fact, the proposed model can be used to compute the
optimum checkpoint interval that minimizes its execution time, energy consumption, or a
combination of those requirements.

The programs that provide the numerical solutions we have discussed have been
made publicly available at the GitHUB repository with Matlab scripts of our mathematical
model at https://github.com/siavvasm/optimum-checkpoint-interval.

Future work will consider nested program structures, and ways of linking check-
pointing and program structure in a useful manner, similar to what is done in this paper
for programs with a large single loop. The impact of multiple programs running on the
same platform also needs to be considered. Indeed the ALCR approach deals with each
program singly, while the checkpoint for each program dilates the execution time and
energy consumption of each individual program, and by extension of the collection of
programs, which share the same platform.

https://github.com/siavvasm/optimum-checkpoint-interval
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